Q. 2 a. Evaluate $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\cos A x-\cos B x}{x^{2}}\right)$
Q.2.a. Som:

We have, $\operatorname{limit}_{x \rightarrow 0}\left(\frac{\cos A x-\cos B x}{x^{2}}\right) \quad\left(\right.$ form $\left.\frac{0}{0}\right)$

$$
\begin{aligned}
& =\operatorname{Lt}_{x \rightarrow 0} \frac{2 \sin \left(\frac{A+B}{2}\right) x \cdot \sin \left(\frac{B-A}{2}\right) x}{x^{2}}\left[\because \cos C-\cos D \rightarrow 2 \sin \frac{C+B}{2} \cdot \sin \frac{D-C}{2}\right. \\
& =\operatorname{LLf}_{x \rightarrow 0}\left\{\frac{\sin \left(\frac{A+B}{2}\right) x}{\left(\frac{A+B}{2}\right) x} \times\left(\frac{A+B}{2}\right) \frac{\sin \left(\frac{B-A}{2}\right) x}{\left(\frac{B-A}{2}\right) x} \times\left(\frac{B-A}{2}\right)\right\} \\
& =2\left(\frac{B+A}{2}\right)\left(\frac{B-A}{2}\right) L_{x \rightarrow 0}\left\{\frac{\sin \left(\frac{A+B}{2}\right) x}{\left(\frac{A+B}{2}\right) x}\right\} \times\left\{\operatorname{Lin}_{x \rightarrow 0}\right\}\left(\frac{B-A}{2}\right) x \\
& =
\end{aligned}
$$

$$
=\left(\frac{B-A^{2}}{2}\right)(1)(1)=\frac{B^{2}-A^{2}}{2} \text { Ans. }
$$

b. Expand e^{x} in powers of $(\mathrm{x}+3)$.

Q2:16. som $\quad F(x)=t$
by Taylor's Thecorem,

$$
f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots 2 n_{1}
$$

Here,

$$
\begin{aligned}
& h=x+3 \\
& a+b=x \text { or } a+(x+3)=x, a=-3
\end{aligned}
$$

Pntting the values of a, h in Taylor's Theorom, weget

$$
\begin{aligned}
& \text { Sntting the values of } a, h \text { in Taylor's (heorom, we } \\
& f(-3+x+3)=f(-3)+(x+3) f^{\prime}(-3)+\frac{(x+3)^{2}}{2!} f^{\prime \prime}(-3)+\frac{(x+3)^{3}}{3!} f^{\prime \prime \prime}(-3, \\
& e^{x}=e^{-3}+(x+3) e^{-3}+\frac{1}{2!}(x+3)^{2} e^{-3}+\frac{(x+3)^{3}}{3!} e^{-3}+2 \text { don } \\
& e^{x}=e^{-3}\left[1+(x+3)+\frac{(x+3)^{2}}{2!}+\frac{(x+3)^{3}}{3!}+\cdots\right] \\
& e^{x}=\frac{1}{20}\left[1+(x+3)+\frac{(x+3)^{2}}{2!}+\frac{(x+3)^{3}}{3!}+\cdots\right] \text { Ars }
\end{aligned}
$$

Q. 3 a. Evaluate $\int_{0}^{2} \sqrt{\frac{2+x}{2-x}} d x$
Q.3.a. Som: $\int_{0}^{2} \sqrt{\frac{2+x}{2-x}} d x$

Rationalising the numerator, $=\int_{0}^{2} \frac{2+x}{\sqrt{4-x^{2}}} d x$
$=\int_{0}^{2} \frac{2}{\sqrt{4-x^{2}}} d x+\int_{0}^{2} \frac{x}{\sqrt{4-x^{2}}} d x \quad 2 m+x y$
$=\left[2 \sin ^{-1} \frac{x}{2}\right]_{0}^{2}-\left[\sqrt{4-x^{2}}\right]_{0}^{2} \quad \ln h \mathrm{H}$
$=2\left[\sin ^{-1} 1-\sin ^{-1} 0\right]-[\sqrt{4-4}-2]$
$=2\left[\frac{\pi}{2}\right]+2=\pi+2$ Ans $(\pi+2)$
b. Find the length of the curve $\mathrm{x}=\operatorname{acos}^{3} \theta, \mathrm{y}=\operatorname{asin}^{3} \theta$, in the first quadrant.
Q.3:b. Sorn:

$$
\text { Here } \begin{aligned}
\frac{d x}{d \theta} & =-3 a \cos ^{2} \theta \cdot \sin \theta \\
\frac{d y}{d \theta} & =3 a \sin ^{2} \theta \cdot \cos \theta
\end{aligned}
$$

and θ varies from 0 to $\frac{\pi}{2}$ for the first quadrant.

$$
\text { Required length of the curve }=\int_{0}^{\pi / 2} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \text {. }
$$

$$
=\int_{0}^{\pi / 2} \sqrt{9 a^{2} \cos ^{4} \theta \sin ^{2} \theta+9 a^{2} \sin ^{4} \theta \cdot \cos ^{2} \theta} d \theta
$$

$$
=3 a \int_{0}^{\pi / 2} \sin \theta \cdot \cos \theta \sqrt{\cos ^{2} \theta+\sin ^{2} \theta} \cdot d \theta
$$

$$
=3 a \int_{0}^{\pi / 2} \sin \theta \cdot \cos \theta d \theta
$$

$$
=3 a\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{\pi / 2}=\frac{3 a}{2} \text { Ans of N ANs }
$$

Q. 4 a. Separate into real and imaginary part of $\sec (x+i y)$
Q.4.a. som.
we hare, $\sec (x+i y)=\frac{1}{\cos (x+i y)}$

$$
\begin{aligned}
& \Rightarrow \sec (x+i y)=\frac{2 \cos (x-i y)}{2 \cos (x+i y) \cdot \cos (x-i y)} \quad \text { gM HN } \\
& \Rightarrow \sec (x+i y)=\frac{2[\cos x \cdot \cos (i y)+\sin x \cdot \sin (i y)]}{\cos 2 x+\cos (i z y)} \\
& \Rightarrow \sec (x+i y)=\frac{2 \cos x \cdot \cosh y+2 i \sin x \cdot \sinh y}{\cos 2 x+\cosh y} \text { HMN.Ns } \\
& \Rightarrow \sec (x+i y)=\frac{2 \cos x \cdot \cosh y}{\cos 2 x+\cosh y}+i \frac{2 \cdot \sin x \cdot \sin h}{\cos 2 x+\cosh y}
\end{aligned}
$$

Ans $\left[\begin{array}{l}\therefore \text { Real part of } \sec (x+i y)=\frac{2 \cos x \cdot \cosh y}{\cos 2 x+\cosh y y} \\ \text { and IN }\end{array}\right.$
b. If two impedance $Z_{1}=50 \angle-40^{\circ}$ and $Z_{2}=70 \angle 30^{\circ}$ are connected in series, find the total impedance in polar form.
$\frac{\text { Q. } 4 \cdot b \cdot \frac{\text { sots: }}{\text { we have, }}}{\text { wi }}$

$$
\begin{aligned}
& \text { We thane, } \\
& \begin{aligned}
z_{1} & =50<-40^{\circ}=50\left\{\cos \left(-40^{\circ}\right)+i \sin \left(-40^{\circ}\right)\right\} \\
\Rightarrow z_{1}=50\left(\cos 40^{\circ}-i \sin 40^{\circ}\right) & =50(0.7660-i 0.6428) \\
& =38.3-32.14 i
\end{aligned}
\end{aligned}
$$

and $z_{2}=70 \angle 30^{\circ}=70\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)=70(0.8660+0.5 i)$

$$
=60.62+35 i
$$

Since z_{1} and z_{2} are connected in series,
\therefore Total impedance $Z=Z_{1}+Z_{2}$

$$
\begin{aligned}
& =(38.3-32.14 i)+(60.62+35 i) \\
& =98.92+2.86 i \quad \text { Gm ny s }
\end{aligned}
$$

$$
\Rightarrow|z|=\sqrt{(98.92)^{2}+(2.86)^{2}}=98.947
$$

The argument θ of 2.2 given by

$$
\tan \theta=\frac{2.86}{98.92} \Rightarrow \theta=1.656^{\circ} \mathrm{J}
$$

Hence, the polar form of z is $98.94<1.656$ or $98.94(\cos \theta+\sin \theta)$, where $\theta=1.656^{\circ}$.
Q. 5 a. If $\vec{a}=\mathbf{i}+2 \mathbf{j}-3 k$ and $\vec{b}=3 \mathbf{i}-\mathbf{j}+2 k$, show that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular to each other. Also find the angle between $2 \vec{a}+\vec{b}$ and $\vec{a}+2 \vec{b}$.
Q.5.a. sobs:

$$
\vec{a}+\vec{b}=4 i+j-k \text {, and } \vec{a}-\vec{b}=-2 i+3 j-5 k
$$

$$
\Rightarrow \quad(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0
$$

Hence $(\vec{a}+\vec{b}) \dot{n} \perp$ to $(\vec{a}-\vec{b})$
Let $\vec{A}=2 \vec{a}+\vec{b}=(2 i+4 j-6 k)+(3 i-j+2 k)$

$$
\Rightarrow \quad \vec{A}=5 i+3 j-4 k
$$

and $\vec{B}=\vec{a}+2 \vec{b}=(i+2 j-3 k)+(6 i-2 j+4 k)$

$$
\Rightarrow \quad \vec{B}=(7 i-0 . j+k)
$$

Now angle between \vec{A} and \vec{B} is given ∞,

$$
\begin{aligned}
& \text { Now angle between } \overrightarrow{A \cdot \vec{B}} \\
& \cos \theta=\frac{(\vec{A}| | \vec{B} \mid}{\cos \theta} \\
& \cos \theta=\frac{(5 i+3 j-4 k) \cdot(71+0 j+k)}{\sqrt{25+9+16} \cdot \sqrt{49+0+1}} \\
& \cos \theta=\frac{35-4}{\sqrt{50} \times \sqrt{50}}=\frac{31}{50} \Rightarrow \theta=\cos ^{-1}\left(\frac{31}{50}\right)
\end{aligned}
$$

So angle between $(2 \vec{a}+\vec{b})$ and $(\vec{a}+2 \vec{b})$
is $\cos ^{-1}\left(\frac{31}{50}\right)$. Ans harks
b. A rigid body is spinning with an angular velocity of 27 radian / sec about an axis parallel to $2 \hat{i}+\hat{j}-2 \hat{k}$ passing through the point $\hat{i}+3 \hat{j}-\hat{k}$. Find the velocity of the point whose position vector is $4 i+8 j+k$.

$$
\begin{aligned}
& \text { Q. } 3 . a \cdot \text { som } \\
& \text { Let } \overrightarrow{i t} \text { be the angular of the body } \\
& \text { rotating about an axis parallel to } \\
& \text { the vector } 2 i+j-2 k \\
& \text { their, } \vec{心}=27, \frac{2 i+j-2 k}{\sqrt{4+1+4}}
\end{aligned}
$$

$$
\begin{aligned}
& =18 i+9 j-18 k \\
& \text { Let } \vec{\gamma}=\overrightarrow{O P}=P \cdot r \text { of } P-P r \cdot \text { of } c \\
& \vec{r}=(4 i+8 j+k)-(i+3 j-k) \geqslant \text { mung } \\
& \vec{\gamma}=3 i+5 j+2 k \\
& \text { Let } \vec{G} \text { be the velocity of the particle at } P \text {. } \\
& \text { then, } \vec{\imath}=\vec{i} \times \vec{r}=\left|\begin{array}{ccc}
i & j & k \\
1 z & 9 & -18 \\
3 & 5 & 2
\end{array}\right| \\
& \vec{e}=108 i-90 j+63 k \quad \text { hUMAN } \\
& =9(12 i-10 j+7 k) \text { Ans }
\end{aligned}
$$

Q. 6 a. Solve the equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \cdot \sin x$

$$
\begin{aligned}
& \text { Q.6.a. Som: } \\
& \left(D^{2}-2 D+1\right) y=x e^{x} \sin x \quad\left(\because D \equiv \frac{d}{d x}\right) \\
& A \cdot E \quad D^{2}-2 D+1=0 \\
& \text { or }(D-1)^{2}=0 \text {, or } D=+1,+1 \\
& \text { CF. }=\left(c_{1}+c_{2} x\right) e^{x} \quad 3 \text { Mans } \\
& \text { PhI. }=\frac{1}{(\Delta-1)^{2}} \cdot x e^{x} \sin x=e^{x} \cdot \frac{1}{(D+1-1)^{2}} \cdot x \sin x \\
& =e^{x} \cdot \frac{1}{D^{2}} x \sin x=e^{x} \cdot \frac{1}{D}(-x \cos x+\sin x) \\
& =e^{x}[-x \sin x-\cos x-\cos x] \\
& =-e^{x}[x \sin x+2 \cos x] \text { inks } \\
& y=\left(c_{1}+c_{2} x\right) e^{x}-e^{x}[x \sin x+2 \cos x] \text { Ans. }
\end{aligned}
$$

b. The deflection of a strut of length ℓ with one end $(x=0)$ build-in and the other supported and subjected to end thrust P, satisfies the equation

$$
\frac{d^{2} y}{d x^{2}}+a^{2} y=\frac{a^{2} R}{P}(\ell-x)
$$

Prove that the deflection curve is $y=\frac{R}{P}\left(\frac{\sin a x}{a}-\ell \cos a x+\ell-x\right)$, where $a \ell=\tan a \ell$

Ans Ex14.13, page 566 of B S Grewal
Q. $7 \quad$ a. Obtain the Fourier series to represent the function $\mathbf{f}(\mathrm{x})=|\mathrm{x}|$ for $-\pi<\mathrm{x}<\pi$ and hence deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots$
Q.7.a. sorn:
we have $f(x)=|-x|=|x|=f(x)$
so, $f(x)$ is an even function. Therefore, the fourier serin consists of cosine terms only and \bar{s} given by,
$\frac{a_{0}}{2}+\sum^{\infty} a_{n} \cos n x$ where $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$

1) Ne Determination of a_{0}, we have,
(ii) and $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) n x d x$

$$
\begin{aligned}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& \Rightarrow a_{0}=\frac{2}{\pi} \int_{0}^{\pi}|x| d x=\frac{2}{\pi} \int_{0}^{\pi} x d x \\
& \Rightarrow a_{0}=\frac{2}{\pi}\left[\frac{x^{2}}{2}\right]_{0}^{\pi}=\frac{2}{\pi}\left(\frac{\pi^{2}}{2}-0\right)=\frac{2}{\pi} \times \frac{\pi^{2}}{2}=\pi \quad 2 m_{1}
\end{aligned}
$$

Determination of a_{n} : we have,

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& \Rightarrow a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& \Rightarrow a_{n}=\frac{2}{\pi}\left[x \frac{\sin x}{n}+\frac{\cos n x}{n^{2}}\right]_{0}^{\pi} \\
& \Rightarrow a_{n}=\frac{2}{\pi}\left[\frac{\cos n \pi-1]}{n^{2}}=\frac{2}{n^{2} \pi}(\cos n \pi-1)\right. \text { hinnies } \\
& \Rightarrow a_{n}=\frac{2}{n^{2} \pi}\left\{(-1)^{n}-1\right\} \\
& \Rightarrow a_{n}=\left\{\frac{4}{\pi n^{2}}, \text { if } n\right. \text { is odd }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Substituting the values of } a_{0} \text {, an, bn in (1) } \\
& \text { we obtain, } \\
& \frac{\pi}{2}-\frac{4}{\pi}\left\{\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right. \text { (11) }
\end{aligned}
$$

as the fourier serins of $f(x)=|x|$
Sic $f(x)$ is continuous on $[-\pi, \pi]$
$\therefore f(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{1} \frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots$ iii The sum of the entices at $x=0$, is $f(0)=101=0$ fating $x=0$ in (IIi), we get

$$
\begin{aligned}
\text { fating } x & =0 \\
0 & \left.=\frac{x}{2}-\frac{4}{\pi} \sum_{1} \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots\right\} \\
\Rightarrow \frac{x^{2}}{8} & =\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \text { Ans }
\end{aligned}
$$

b. Find the Fourier series for the function $\mathrm{f}(\mathrm{x})=\mathbf{x}$ in the interval $[-\pi, \pi]$ © $2.7 \cdot b$ sols. Clearly, $f(x)=x$ is an odd function, Therefore, fourier series for $f(x)$ is purely a Sine Series give $\sum_{n=1}^{\infty} b_{n} \sin n x$, where, $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$
Since $f(x)=x$ i continous for ale $x \sum_{\text {保 }}^{\circ}(-\bar{\pi}, \pi)$ ie
\therefore fourier series of $f(x)$

$$
x=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

computation $b_{n}=\frac{n}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$

$$
\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin n x
$$

or ${ }^{n=1} 2\left\{\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\cdots\right\}$ as the forster leserics of $f(x)$.

$$
\begin{aligned}
& \Rightarrow b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x \\
& \Longrightarrow b_{n}=\frac{2 \pi}{\pi}\left[-x \frac{\cos n x}{n}+\frac{\sin n x}{n^{2}}\right]_{0}^{\pi}=\frac{2}{\pi}\left[\left(-\frac{\cos n \pi}{n}+\frac{\sin n \pi}{n^{2}}\right)\right. \\
& \begin{array}{l}
m=\frac{2}{n} \cos n n=-\frac{2}{n}(-1)^{n}=\frac{2}{n}(-1)^{n}+1 \\
\text { garbstitnting the value of bin in (1), we obtain murks }
\end{array}
\end{aligned}
$$

Q. 8 a. Find the Laplace transform of $e^{-t}\left(3 \sin t-\cos ^{2} t\right)$
Q.8.a. som.

We have, $L\left\{3 \sin t-\cos ^{2} t\right\}=L\left\{3 \sin t-\frac{(1+\cos 2 t)}{2}\right\}$

$$
\begin{aligned}
& =\frac{1}{2} L\{6 \sin t-\cos 2 t-1\} \\
& =\frac{1}{2}[6 \omega\{\sin t\}-\omega\{\cos 2 t\}-L\{1\}] \\
& =\frac{1}{2}\left\{\frac{6}{s^{2}+1}-\frac{s}{s^{2}+4}-\frac{1}{s}\right\}=\frac{3}{s^{2}+1}-\frac{s^{2}+2 M N B}{s\left(s^{2}+4\right)} \\
\therefore & L\left\{e^{-t}\left(3 \sin t-\cos ^{2}+t\right\}\right\}=\frac{3}{(s+1)^{2}+1}-\frac{(s+1)^{2}+2}{\left.(s+1)\{s+1)^{2}+4\right\}} \\
\Rightarrow & L\left\{e^{-t}\left(3 \sin t-\cos ^{2} t\right)\right\}=\frac{3}{s^{2}+2 s+2}-\frac{s^{2}+2 s+3}{(s+1)\left(s^{2}+2 s+5\right)}
\end{aligned}
$$

b. Find the Laplace transform of $t \sin ^{2} t$
Q.8.b. Som.

We have, $L\left\{\sin ^{2} t\right\}=\frac{2}{s\left(s^{2}+4\right)}$

$$
\begin{aligned}
& L\left\{t \sin ^{2} t\right\}=-\frac{d}{d s}\left\{\frac{2}{s\left(s^{2}+4\right)}\right\} \\
& \Rightarrow L\left\{t \sin ^{2} t\right\}=-2 \frac{d}{d s}\left\{s^{-1}\left(s^{2}+4\right)^{-1}\right\} \\
& =-2\left\{-s^{-2}\left(s^{2}+4\right)^{-1}-s^{-1}\left(s^{2}+4\right)^{-2} \frac{d}{d s}\left(s^{2}+4\right)\right\} \\
& \Rightarrow \quad W\left\{t \sin ^{2} t\right\}=-2\left\{-\frac{1}{s^{2}\left(s^{2}+4\right)}-\frac{1}{s\left(s^{2}+4\right)^{2}} \times 2 s\right\} \\
& =\frac{2\left(s^{2}+2 s+4\right)}{s^{2}\left(s^{2}+4\right)^{2}} \text { Ans } 8 m \mathrm{AHs}
\end{aligned}
$$

Q. 9
a. Find $L^{-1}\left\{\frac{2 s^{2}-4}{(s-2)(s+\ell)(s-3)}\right\}$

$$
\frac{Q .9 \cdot a \cdot \text { Corm: }}{\text { Let } \left.\frac{2 s^{2}-4}{(s-2)(s+1)(s-3)} \equiv \frac{A}{s-2}+\frac{B}{s+1}+\frac{c}{s-3}-2\right)}
$$

Mquttplying both Sides by $(s-2)(s+1)(s-3)$, we get Murk $2 s^{2}-4 \equiv A(s+1)(s-3)+B(s-2)(s-3)+C(s-2)(s+1)$ This n an identity in s and so it holds for all. values of S. Putting $S=2,-1,3$, we fer,

$$
A=-\frac{4}{3}, B=-\frac{1}{6}, C=\frac{7}{2}
$$

Thus we have, $\Rightarrow \mathcal{L}^{-1}\left\{\frac{2 s^{2}-4}{(s-2)(s+1)(s-3)}\right\}=-\frac{4}{3} e^{2 t}-\frac{1}{6} e^{-t}+\frac{7}{2} e^{3 t} \operatorname{Ans}$
b. Find $L^{-1}\left\{\frac{\ell}{s^{3}\left(s^{2}+\ell\right)}\right\}$

$$
\begin{aligned}
& \text { Qi. . b. som: } \\
& \text { We have, } \\
& \operatorname{Li}^{-1}\left\{\frac{1}{s^{2}+1}\right\}=\sin t<\text { gM.NS } \\
& \therefore L^{-1}\left\{\frac{1}{s\left(s^{2}+1\right)}\right\}=\int_{0}^{t} L^{-1}\left\{\frac{1}{s^{2}+1}\right\} d t-2 M M \cdot y \\
& \Rightarrow \quad \mathcal{N}^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+1\right)}\right\}^{-0}=\int_{0}^{t} \sin t d t=1-\cos t \quad L^{-1}\left\{\frac{1}{s\left(s^{2}+1\right)}\right\} d t \quad g M N H \\
& \begin{array}{l}
=\int_{0}^{t}(1-\cos t) d t=t-\sin t \\
\}=\int_{0}^{t} L^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+1\right)}\right\} d t
\end{array} \\
& \Rightarrow L^{-}\left\{\frac{1}{s^{3}\left(s^{2}+1\right)}\right\}=\int_{0}^{t} L^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+1\right)}\right\} d t \\
& \Rightarrow L^{-1}\left\{\frac{1}{s^{3}\left(s^{2}+1\right)}\right\}=\int_{0}^{t}(t-\sin t) d t \\
& =\frac{t^{2}}{2}+\cos t-1 \operatorname{An} \rho L
\end{aligned}
$$

Text book

1. Engineering mathematics -Dr. B.S.Grewal, 12th edition 2007, Khanna publishers, Delhi 2. Engineering Mathematics - H.K.Dass, S. Chand and Company Ltd, 13th Revised Edition 2007, New Delhi
