
b.Find the point on the curve $y=7 x-3 x^{2}$ where the inclination of the tangent with $x-$ axis is of 45°, Also find the equation of the normal to the given curve at that point.
(b) Let $P\left(x_{1}, y_{1}\right)$ be a point on the curve $y=7 x-3 x^{2}$, Where the tangent n inclined at an angle of 45° with the x-axis. then,
Slope of the tangent at $P=\tan 45^{\circ}$
« $\left(\frac{d y}{d x}\right)_{p}=\tan 45^{\circ} \Rightarrow\left(\frac{d y}{d m}\right)_{p}=1$ (i) $\quad 1 m_{n k}$ infferentiating $y=7 x-3 x^{2}$ wires. x, we get

$$
\frac{d y}{d x}=7-6 x
$$

$$
\therefore\left(\frac{d y}{d x}\right)_{i}=7-6 x_{1}
$$

from (i) and (11), we, et

$$
y-6 x_{1}=1 \Rightarrow x_{1}=1
$$

Since $P\left(x_{1}, y_{1}\right)$ lis on the curve $y=7 x-3 x^{2}$

$$
y_{1}=7 x_{1}-3 x_{1}^{2} \text { Link }
$$

$$
\Rightarrow y_{1}=7-3=4 \quad\left[\text { nutting } x_{1}=1\right]
$$

Hence, the required point on the core $5(1,4)$
 of $y-4=4(x-1)$ of $x+y=5$ - MOnk
Q.3a. Evaluate $\int \frac{1+\sin x}{\sin x(1+\cos x)} d x$
Q.3.a. Soln:

Let $I=\int \frac{1+\sin x}{\sin x(1+\cos x)} d x$
Thting $\sin x=\frac{2 \tan x / 2}{1+\tan ^{2} x / 2}$ and $\cos x=\frac{1+\tan ^{2} x / 2}{1+\tan ^{2} x / 2}$, wéset
$I=\int \frac{1+\frac{2 \tan x / 2}{1+\tan ^{2} x_{2}}}{\frac{2 \tan x_{2}}{1+\tan ^{2} x_{2}}\left(1+\frac{1-\tan ^{2} x^{2} / 2}{1+\tan ^{2} x_{2}}\right)} d x$
$\Rightarrow I=\int \frac{\left(1+\tan ^{2} x_{2}+2 \tan \tan _{2}\right)\left(1+\tan ^{2} x_{2}\right)}{2 \tan \tan _{2}\left(1+\tan ^{2} x_{2}+1-\tan ^{2} x_{2}\right)} d x$
$\Rightarrow I=\int \frac{\left(1+\tan x_{2}\right)^{2} \sec ^{2} x_{2}}{1 \tan x_{2}} d x \quad-3 m_{1} \operatorname{sic}$
Pratting $\tan x / 2=t$ and $(1 / 2) \sec ^{2}\left(x_{12}\right) d x=d t$ we get 4 MAV
$I=\int \frac{(1+t)^{2}}{4 t} 2 d t$
$\Rightarrow I=\frac{1}{2} \int \frac{1+t^{2}+2 t}{t} d t=\frac{1}{2} \int\left(\frac{1}{t}+t+2\right) d t$ 6OTHN
$\Rightarrow I=\frac{1}{2} \int \frac{1}{t}$
$\left.\Rightarrow I=\frac{1}{2}\left\{\log |t|+\frac{t^{2}}{2}+2 t\right\}_{2 x / 2}+2 \tan x_{2}\right\}+c$
$\Rightarrow I=\frac{1}{2}\left\{\log \left|\tan x_{2}\right|+\frac{\tan }{2}+\quad\right.$ SMNM
\Rightarrow an
Gn

b.Evaluate $\int_{0}^{\pi / 2} \log \tan x d x$ Q.3.b. $\left.\begin{array}{rl} \text { Let } I & =\int_{0}^{\operatorname{mon}} 1 \\ \text { Hew, } I & =\int_{0}^{\pi / 2} \log \tan \left(\frac{\pi}{2}-x\right) d x-2 M n k y \\ \Rightarrow I & =\int_{0}^{\pi / 2} \log \cdot \cot x d x \\ & =\int_{0}^{a} f(a-x) d x \end{array}\right]$ Aolding (i) and (ii), we get
Q. 4 a. Prove that $\left\|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right\|=(a-b)(b-c)(c-a)$.

$$
\begin{aligned}
& \text { b. } s=\left|\begin{array}{rrr}
3 & -2 & 4 \\
1 & 1 & 3 \\
-1 & 2 & -1
\end{array}\right|=-5 \rightarrow \text { (MAN } \\
& \Delta X=\left|\begin{array}{ccc}
5 & -2 & 4 \\
2 & 1 & 3 \\
1 & 2 & -1
\end{array}\right|=-33 \\
& \left.x y-\left|\begin{array}{ccc}
3 & 5 & 4 \\
1 & 2 & 3
\end{array}\right|=-13 \quad \right\rvert\, M A K \\
& \Delta y=\left|\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & -1
\end{array}\right|=-10 \\
& 104 \\
& \Delta z=\left|\begin{array}{ccc}
3 & -2 & 5 \\
1 & 1 & 2 \\
-1 & 2 & 1
\end{array}\right|=12 \\
& x=\frac{8 x}{1}=\frac{-33}{-5}=\frac{33}{5} \text {, MMAK } \\
& y=\frac{D y}{\Delta}=\frac{-13}{-5}=\frac{13}{5} \quad-1 \operatorname{Mak} \\
& 2=\frac{\Delta 2}{\Delta}=\frac{12}{-5}=\frac{-12}{5}-1 \mathrm{Mak} \\
& \text { Ans } x=\frac{33}{5}, y=\frac{13}{5}, z=\frac{-12}{5} \text {. } M M \operatorname{MN}
\end{aligned}
$$

Q. 5 a. Solve $\cos (x+y) d y=d x$

Qstal som
$\cos (x+y) d y=d x$
or $\frac{d y}{d x}=\sec (x+y)$
$1 M D A$
On putting $x+y=2$
so that, $1+\frac{d y}{d x}=\frac{d z}{d x}$ or $\frac{d y}{d x}=\frac{d z}{d x}-1$

$$
\text { or } \frac{d z}{d x}=1+\sec 2
$$

or $\frac{d z}{d x}=1+\sec z$
or $\frac{d z}{1+\sec z}=d x$
$\int \frac{\cos 2}{\cos 2+1} d z=\int d x+C$
or $\int\left[1-\frac{1}{\cos 2+1}\right] d z=x+c$
or $\int\left[1-\frac{1}{2 \cos ^{2} \frac{2}{2}-1+1}\right] d z=x+c$
or $\int\left(1-\frac{1}{2} \sec ^{2} \frac{2}{2}\right) d z=x+c-6$ Mask
(or $z-\tan \frac{2}{2}=x+c$

- or $x+y-\tan \frac{x+y}{2}=x+c$
- or y - tan $\frac{x+y}{2}=c$ Ans. 8 Maks
b. Solve $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\cos 2 x$

Qs.(b) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\cos 2 x$

$$
\left(D^{2}+D+1\right) y=\cos x
$$

Auxiliary equation is $D^{2}+D+1=0$
$\begin{aligned} D & =\frac{-1 \pm \sqrt{-3}}{2}, C \cdot F \cdot=e^{-x / 2}\left[A \cos \frac{\sqrt{3}}{2} x+B \sin \frac{\sqrt{3}}{2} x\right] \\ P I & =\frac{1}{D^{2}+D+1} \cdot \cos 2 x \\ & =\frac{1}{-(-2)^{2}+D+1} \cdot \cos 2 x=\frac{1}{D-3} \cdot \cos 2 x \text { MN } 4 \text { ? }\end{aligned}$
$=\frac{D+3}{D^{2}-9} \cdot \cos 2 x=\frac{D+3}{(-2)^{2}-9} \cos 2 x-5 M_{\text {NM }}$
$\begin{aligned} \text { complete solution } & =-\frac{1}{13}(D+3) \cos 2 x\end{aligned} \begin{aligned} & =-\frac{1}{13}(-2 \sin 2 x+3 \cos 2 x) \\ y & =e^{-x / 2}\left[A \cos \frac{\sqrt{3} x}{2}+B \sin \frac{\sqrt{3} x}{2}\right]+\frac{1}{13}[2 \sin 2 x\end{aligned}$

$$
-3 \cos 2 x] \text { Ans. } \operatorname{till}
$$

Q.6a. Prove that, $\cos 2 A \cdot \cos 2 B+\sin ^{2}(A-B)-\sin ^{2}(A+B)=\cos (2 A+2 B)$

$$
\begin{aligned}
& \text { NNI } \\
& \text { Q660. Sim } \\
& \alpha_{4}=1 \alpha_{2} 231 . \cos 2 B+\sin ^{2}(A-B)-\sin ^{2}\left(A+B^{2}\right)^{2} \\
& =\cos 2 A \cdot \cos 2 B+\sin (A+B+A+B) \cdot \sin (A+B+A+B) \\
& \left(\because \sin (A+B) \cdot \sin (A-B)=\sin ^{2}\left(\begin{array}{l}
1-\sin ^{2} B{ }^{\prime} \\
(\alpha) A N N^{\prime}
\end{array}\right.\right. \\
& =\cos 2 A \cdot \cos 2 B+\sin 2 A \cdot \sin (-2 B) \\
& \therefore \cos 2 A \cdot \cos 2 B-\sin 2 A \cdot \sin 2 B \\
& (\sin (r \theta)=-\sin \theta, \\
& =\cos (2 A+2 B)
\end{aligned}
$$

b. If $\mathbf{A}+\mathbf{B}+\mathbf{C}=\pi / 2$, then prove that $\sin 2 A+$

```
\operatorname{sin}2B+\operatorname{sin}2C=4\operatorname{cos}A\cdot\operatorname{cos}B\cdot\operatorname{cos}C
```

L6b $\alpha H=\sin 2 x+\sin 2 B+\sin 2 c$
$=2 \sin \left(\frac{2 A+B}{2}\right) \cdot \cos \left(\frac{x+2 B}{2}\right)+2 \sin \cos \cos$
$=2 \sin (A+B) \cdot \cos (A-B)+2 \sin C \cdot \cos C$
$=2 \cos C \cdot \cos (A+B)+2 \cos c \cdot \sin C$

$=2 \cos \left[[\cos (A-B)+\sin C]\left[\begin{array}{l}A+B+C=\pi / 2 \\ A+B=\pi / 2 C\end{array}\right.\right.$
$=2 \cos [[\cos (A+B)+\cos (A+B)] \quad \sin (A+B)=\sin (1) r c)$
$=2 \cos c \cdot 2 \cos A \cdot \cos B$
$=4 \cos A \cdot \cos B \cdot \cos C$
$=$ RHs. Henectanas $\sin N N^{2} \sin C=\sin \left(\frac{\pi}{2} a+B\right)$
$=\cos (A+B)$
Q. 7 a. Find the term independent of x in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{9}$.

b. In a G. P. the first term is 7, the last term is 448 and the sum is 889 . Find the common ratio and the series.

Q. 8 a. Show that the lines $x-y=6,4 x-3 y=20$ and $6 x+5 y=-8$ are concurrent. Also find their point of intersection.

```
Q.8.a. Show that the lines }x-y=6,4x-3y=20 and
        6x+5y=-8 ane concurent. Also find their
        point of intersection.
    Som: The given lines are re-written as
        x-y-6=0
        6x+5y+8=0 -(ii)
    Solving (i) and (ii), we get
        x-y-6=0 and 4x-3y-20=0
    \frac{x}{20-18}=\frac{y}{-24+20}=\frac{2}{-3+4}
\mathrm{ or }\frac{x}{2}=\frac{y}{-4}=\frac{1}{1}=1
7 
Henee first two lines intsisect at the (2,-4)
    thrting this point in the equation }6x+5y+8=0\mathrm{ ,
    we get, }6\times2+5x-4+8=
        \therefore(2,-4) lies on }6x+5y+8=0,
    thenee the given lines are coneument and
    their common point of intersection }\hat{b}(2,-4)\mathrm{ ,
```

b. Find the equation of the straight lines through the point ($2,-1$) and making an angle of 45° with the line $6 x+5 y-1=0$

$$
\begin{aligned}
& \text { Q.8.b. som: Equation of st line through (2,-1) } \\
& \text { and having slope } m \text { ss } y+1=m(x-2) \\
& \text { (i) makes an angle } 45^{\circ} \text { with line } \\
& \qquad 6 x+5 y-1=0 \\
& \text { Slope of (ii) } h \frac{-6}{5} \\
& \text { tan } 45^{\circ}= \pm \frac{m+\frac{6}{5}}{1-\frac{6 m}{5}} \\
& \text { or }= \pm \frac{5 m+6}{5-6 m} \\
& \text { Taking the sign : } \\
& 5-6 m=+(5 m+6) \Rightarrow m=-\frac{1}{11} \\
& \text { Taking -ne sign } \\
& 5-6 m=-(5 m+6) \Rightarrow m=11
\end{aligned}
$$

Q. 9 a. Find the equation of the circle which passes through the points (3, -2), ($-2,0$) and having its centre on the line $2 x-y=3$.
Q.9.9. Som: Let the equation of the circle $1 x$ v $41 " 1)$

$$
x^{2}+y^{2}+2 y x+2 f y+c=0
$$

As (i) Pnses through $(3,-2)$
$\therefore \quad 9+4+6 g-4 f+c=0$
or $\quad 6 q-4 f+c=-13$

Also (i) phases through $(-2,0)$
$4+0-49-0+C=0$
or $\quad 4 g-c=4$

The centiare $(-g,-f)$ of (i) lies on $2 x-y=3$

$$
-2 g+f=3
$$

Adding (ii) and (iii), we get

$$
10 g-4 f=-9
$$

$\begin{aligned} & \text { solving (iv) and }(v) \text {, we get } \\ &$$$
g
$$$=\frac{3}{2}, f=6 \quad-G M W\end{aligned}$

flatting of in (iii), we fer $c=2$
Substituting these values of g, f and c in (i) wiper

$$
x^{2}+y^{2}+3 x+12 y+2=0
$$

b. Find the equation of the parabola with focus $(3,-4)$ be the directrix $6 x-7 y+5=0$

TEXTBOOKS

I. Applied Mathematics for Polytechnics, H. K. Dass, 8th Edition, CBS Publishers \& Distributors
II. A text book of comprehensive Mathematics class XI, Parmanand Gupta, Laxmi Publications (P) Ltd., New Delhi
III. Engineering Mathematics, HK Dass, S Chand and Company Ltd, $13^{\text {th }}$ Edition, New Delhi

