Q.2a. Explain the photolithography process used in IC fabrication.

Ans: Page 7 to 8 of reference 2
b. Explain various methods used for deposition of thin films.

Ans: Page 31 to 32 of reference 2
Q. 3 a. Draw the Common Emitter circuit and draw its h-parameter equivalent circuit and derive the expressions for
(i) Input Resistance
(ii) Output Resistance
(iii) Voltage Gain
(iv) Current Gain

Ans : Page 254 to 257of reference 1
b.Calculate $\boldsymbol{R}_{\boldsymbol{i}}, \boldsymbol{R}_{\boldsymbol{o}}, \boldsymbol{A}_{\boldsymbol{v}}$ for the circuit shown in Fig. 1 below with $\boldsymbol{h}_{i e}=2.0 \mathrm{k} \Omega, \quad \boldsymbol{h}_{f e}=75$ and $h_{o e}=1.0 \mu \mathrm{~s}$.

Ans : Page 258 to 259 of reference 1
Q.4a. Explain the operating principle of N-channel JFET.

Ans : Page 346 to 347 of reference 1
b.Explain how an N-channel JFET can be used as an amplifier

Ans : Page 364 to 365 of reference 1
Q.5a. Calculate the maximum efficiency of Class A amplifier shown below in Fig.2.

Assume that the transformer has an efficiency of $\mathbf{8 0 \%}$.

Ans : Page 814 of reference 1
b. Explain the operation of Class B power amplifier with a neat circuit diagram.

Ans: Page 815 of reference 1
Q.6a. Explain the basic differential amplifier.

Ans: Page 53 to 55 of reference 2
b. Define the term "Slew Rate" for an Op-Amp and derive the expression for maximum input frequency at which undistorted output voltage is obtained.

Ans : Page 123 to 125 of reference 2
Q. 7 a. Explain the V to I and I to V converter circuits using Op-Amp.

Ans : Page 146 to 147 of reference 2
b. Draw the circuit of integrator using Op-Amp and derive the expression for its output.

Ans : Page 168 to 169 of reference 2
Q. 8 a. Explain, with a neat circuit diagram, the working of Schmitt Trigger using an OP-Amp.

Ans : Page 212 to 214 of reference 2
b. Draw the circuit of monostable multivibrator using 555 IC and derive the expression for time period T.

Ans : Page 312 to 314 of reference 2
Q. 9 a. Explain the working of a Regulated Power Supply with a neat diagram.

Ans : Page 240 to 241 of reference 2
b. Explain, with a neat diagram, the working of Successive Approximation Type Analog to Digital Converter.

Ans : Page 240 to 241 of reference 2

Text Book

1. Electronic Devices and Circuits, Fifth Edition, David A Bell, OXFORD UNIVERSITY PRESS, Thirteenth impression 2010.
2. Linear Integrated Circuits, 4th Reprint 2011 Edition, D. Roy Choudhury, Shail B. Jain, New Age International Publishers
