Q. 2 a. Evaluate $\operatorname{Lt}_{x \rightarrow 0} \frac{\sqrt{1+\sin \mathrm{x}}-\sqrt{1-\sin \mathrm{x}}}{\mathrm{x}}$

Q,24 Som:
we have,

$=\operatorname{lit}_{x \rightarrow 0} \frac{1+\sin x-1+\sin x}{x(\sqrt{1+\sin x}+\sqrt{1-\sin x})}$

$$
=\frac{2}{2}=1 \quad \text { An cis } 1
$$

b. Show that the function $f(x)=|x|$ is not differentiable at $x=0$

Q, 2, b, Som:

$$
=\operatorname{ltt}_{h \rightarrow 0}(-1)=1
$$

$$
\text { and } R f^{\prime}(0)=\operatorname{lit}_{h \rightarrow 0}^{h \rightarrow 0} \frac{f^{\prime}(0+h)-f(0)}{h}=\operatorname{lt}_{h \rightarrow 0} \frac{f(h)-f(0)}{h}
$$

$$
=\operatorname{lf}_{h \rightarrow 0} \frac{|h|-0}{h}=\operatorname{li}_{h \rightarrow 0} \frac{h}{h}=L_{h \rightarrow 0}+1=1
$$

$$
\text { Thus, } L f^{\prime}(0) \neq R f^{\prime}(0)
$$

$-4 M M_{4}$
Hence, $f(x) \hat{n}$ not differentiable at $x=0$
Q.3a. Compute the arc-length of the curve $a^{2}=x^{3}$ from $x=0$ to a point having $=5 \mathrm{a}$.

Q3.a. som:

$$
\begin{aligned}
& \quad a y^{2}=x^{3} \\
& 2 a y \frac{d y}{d x}=3 x^{2} \text { or } \frac{d y}{d x}=\frac{3 x^{2}}{2 a y}=\frac{3 x^{2}}{2 a\left(\frac{x^{3}}{a}\right)^{1 / 2}} \\
& \frac{d y}{d x}=\frac{3 x^{2}}{2 a^{1 / 2} x^{3 / 2}}=\frac{3 x^{1 / 2}}{3 a^{1 / 2}} \\
& \text { Required length }=\int_{0}^{5 a} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \text { 2m/ny }
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have, } L f^{\prime}(0)=L_{h \rightarrow 0} \rightarrow h_{h}=L_{h \rightarrow 0}-h((x-h)-f(0) \\
& =\operatorname{Lt}_{h \rightarrow 0} \frac{|-h|-0}{-h}=\operatorname{Lt}_{h \rightarrow 0}+\frac{h_{h}}{-h}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{5 a} \sqrt{1+\frac{9 x}{4} \frac{x}{a}} d x \\
& =\frac{1}{2 \sqrt{a}} \int_{0}^{5 a} \sqrt{4 a+9 x} d x \\
& =\frac{1}{2 \sqrt{a}} \frac{2}{3 \times 9}\left[(4 a+9 x)^{3 / 2}\right]_{0}^{5 a} \\
& =\frac{1}{27 a^{4 / 2}}\left[(4 a+9 \times 5 a)^{3 / 2}-(4 a)^{3 / 2}\right] \\
& =\frac{1}{27 a^{4 / 2}}\left[343 a-8^{3 / 2}\right]=\frac{335 a}{27} \text { Ans. }
\end{aligned}
$$

b. Find the length of an arch of the cycloid whose equations are $\mathbf{x}=\mathbf{a}(\theta+\sin \theta)$ and \mathbf{y} $=\mathbf{a}(1+\cos \theta)$
Q.3.b. Som.

$$
\begin{aligned}
& x=a(\theta+\sin \theta), \frac{d x}{d \theta}=a(1+\cos \theta) \\
& y=a(1+\cos \theta), \frac{d y}{d \theta}=-a \sin \theta
\end{aligned}
$$

The Unit for half of the curve $\theta=0$ and $\theta=\bar{\pi}$ \therefore The required length of the arch

$$
\begin{aligned}
& =2 \int_{0}^{\pi} \sqrt{\left[\frac{d x}{d \theta}\right]^{2}+\left[\frac{d y}{d \theta}\right]^{2}} d \theta \quad 2 M n y \\
& =2 a \int_{0}^{\pi} \sqrt{(1+\cos \theta)^{2}+\sin ^{2} \theta} d \theta \\
& =2 a \int_{0}^{\pi} \sqrt{\left(1+\cos ^{2} \theta+2 \cos \theta+\sin ^{2} \theta\right)} d \theta \\
& =2 \sqrt{2} a \int_{0}^{\pi} \sqrt{(1+\cos \theta)} d \theta \quad(0=0 \\
& =2 \sqrt{2} \cdot \sqrt{2} a \int_{0}^{\pi} \cos \frac{\theta}{2} d \theta \quad(0,2 a) \\
& =8 a\left[\sin \frac{\theta}{2}\right]_{0}^{\pi}=8 a \text { Ans. }
\end{aligned}
$$

Q.4a. Use De Moivre's Theorem to solve the equation $\mathrm{x}^{7}+\mathrm{x}^{4}+\mathrm{x}^{3}+1=0$

Qu aa. Sim

$$
\begin{aligned}
& \text { We lave } x^{7}+x^{4}+x^{3}+1=0 \\
& \text { or } x^{4}\left(x^{3}+1\right)+\left(x^{3}+1\right)=0 \\
& \text { or }\left(x^{4}+1\right)\left(x^{3}+1\right)=0 \\
& \therefore x:(-1)^{1 / 3} \text { or }(-1)^{1 / 4} \\
& \text { Now, } x=(-1)^{9 / 3} \Rightarrow x=(\cos i+i \sin i)^{1 / 3} \\
& =[\cos (2 m i+1)+i \sin (2 m i n+i)]^{3} \\
& \text { and } 14 y=\cos (2 m+1) \frac{\pi}{3}+x \sin (2 m+1) \cdot 1 / 3
\end{aligned}
$$

Putting $m=0,1,2$ we get the roots on

$$
7
$$

$$
\begin{aligned}
& \cos \pi / 3+i^{\prime} \sin \pi / 3=\frac{1+i \sqrt{3}}{2} \text {, } \\
& \cos n+i \sin n=-1 \\
& \text { and } \cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}=\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& x=(1)^{1 / 4} \Rightarrow x=(\cos i+i \sin i)^{1 / 4} \\
& x=(-1)^{1 / 4} \Rightarrow x=(\cos i+i \sin i)^{1 / 4} \\
& =[\cos (2 m i+\pi)+i \sin (2 m i+n)]^{1 / 4} \\
& \left.=\cos (2 m+1) \frac{\pi}{4}+i \sin (2 m+1)^{\pi / 4}-2 n\right) n k y
\end{aligned}
$$

Putting $m=0,1,2,3$, we get the roots as

$$
\begin{aligned}
& \cos \frac{\pi}{4}+i \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}(1+i) \\
& \cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}(1-i), \\
& \cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}=-\frac{1}{2}(1-i) \\
& \cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}=\frac{1}{\sqrt{2}}(1-i)
\end{aligned}
$$

Hence all the roots of the given egos are,

$$
\begin{aligned}
& \text { Hence all the roots of the given } \\
& -1, \frac{1}{2}(1 \pm i \sqrt{3}) \frac{1}{\sqrt{2}}(1 \pm i), \frac{1}{\sqrt{2}}(-1+1) \text { Ans. }
\end{aligned}
$$

b.Two circuits of impedance $2+4 j$ ohms and $3+4 j$ ohms are connected in parallel and A.C. voltage of 100 volts is applied across the parallel combination. Calculate the magnitude of the currents as well power factor for each circuit and magnitude of the total current for the parallel combination and its power factor.

Q.4.b. Sorn

$$
\begin{aligned}
z_{1} & =2+4 j, z_{2}=3+4 j \\
i_{1} & =\frac{v}{z_{1}}=\frac{100}{2+4 j}=\frac{50}{1+2 j}=\frac{50(1-2 j)}{(1+2 j)(1-2 j)} \\
& =\frac{50(1-2 j)}{1+4}=10(1-2 j)=10-20 j \text { gmnkts }
\end{aligned}
$$

$\left|i_{1}\right|=\sqrt{100+400}=10 \sqrt{5}$ Amp.
Power factor $=\frac{R_{1}}{\mid 2,1}=\frac{2}{\sqrt{20}}=\frac{1}{\sqrt{5}}=0.447, \frac{2 m \mathrm{mHks}}{100(3-45)}=\frac{100(3-4) 7}{9+16} \mathrm{~g} \mathrm{~mm}$
and $\quad i_{2}=\frac{v}{z_{2}}=\frac{100}{3+4 j}=\frac{100(3-4 j)}{(3+4 j)(3-4 j)}$

$$
=4(3-4 j)=12-16 j
$$

$\left|i_{2}\right|=\sqrt{144+256}=20 \mathrm{Amp}$
her factor $=\frac{R_{2}}{\left|z_{2}\right|}=\frac{3}{5}=0.6$ - 2 Mk

$$
-16 j)=22-365
$$

Q.5a. A rigid body is rotating with angular velocity 2 radian/sec about an axis OR where R is $2 i-2 j+k$ and O is the origin. Find the velocity of the point $3 i+2 j-k$ on the body.

Qis.a. Som 1

$$
\left.\begin{array}{rl}
& =\frac{2}{3}(2 i-y+k) \\
\vec{r} & =\overrightarrow{O P}=3 i+2 j-k \\
\vec{v} & =\vec{\omega} \times \vec{r} \\
& =\frac{2}{3}(2 i-2 j+k) \times(3 i+2 j-k) \\
& =\frac{2}{3}\left|\begin{array}{rrr}
1 & j & k \\
2 & -2 & 1 \\
3 & 2 & -1
\end{array}\right|
\end{array}=\frac{2}{3}[(2-2) i-(-2-3) j+(4+6) k]\right)
$$

b. Forces $\mathbf{2 i}+7 \mathbf{j}, \mathbf{2 i}-5 \mathbf{j}+6 \mathbf{k},-\mathbf{i}+2 \mathbf{j}-\mathbf{k}$ act at a point \mathbf{P} whose position vector $\mathbf{i s} \mathbf{4 i}-$ $3 j-2 k$. Find the vector moment of the resultant of three forces acting at P about the point Q, whose position vector is $6 \mathbf{i}+\mathbf{j}-3 k$.

QS. b. Som:
Let $\overrightarrow{F_{1}}=2 i+7 j, \vec{F}=2 i-5 j+6 k, \overrightarrow{F_{3}}=-i+2 j-k$, then the resultant forces \vec{F} is given by

$$
\Rightarrow \begin{aligned}
& \vec{F}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}} \\
& \Rightarrow \vec{F}=3 i+4 j+5 k
\end{aligned} \quad \mathrm{gMH}
$$

Let $\vec{r}=\overrightarrow{Q P}$
$\Rightarrow \vec{r}=$ P.V. of $P-P \cdot v$. of $Q-g m$ inks

$$
\begin{aligned}
& \Rightarrow r=P \cdot \text { of } P-V \cdot \text { of } \\
& \Rightarrow \vec{r}=(4 i-3 j-2 k)-(6 i+j-3 k)
\end{aligned}
$$

$$
\Rightarrow \vec{\gamma}=-2 i-4 j+k
$$

Let \vec{M} be the moment of the resultant force \vec{F} about

$$
\text { Then, } \quad \vec{M}=\vec{\gamma} \times \vec{F}=\left|\begin{array}{ccc}
i & j & k \\
-2 & -4 & 1 \\
3 & 4 & 5
\end{array}\right|
$$

$$
=(-24 i+13 i+4 k) \text { Ares }
$$

Q. 6
a. Solve the differential equation $(D-1)^{2}\left(D^{2}+1\right) y=\sin \frac{1}{2} x, D=\frac{d}{d x}$
b. Solve the equation $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=\sin 2 x$

Qub. Som: $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=\sin 2 x$

$$
\begin{aligned}
&\left(D^{2}+3 D+2\right) y=\sin 2 x \\
& \text { A.F. } F_{1} \text { is } m^{2}+3 m+2=0 \\
& m=-1,-2 \\
& c_{1} F_{1}=c_{1} e^{-x}+c_{2} e^{-2 x}-2 M M \\
& \text { PI } I= \frac{1}{D^{2}+3 D+2} \\
&=\frac{1}{-4+3 D+2}, \\
& \sin 2 x \quad\left[D^{2}=-(2)^{2}=4\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q.b.b. Som } \\
& \text { P. }=\frac{1}{3 D-2} \sin 2 x \\
&=\frac{3 D+2}{9 D^{2}-4} \sin 2 x \\
&=\frac{3 D+2}{9(-4)-4} \sin 2 x \\
&=-\frac{1}{40}(3 D+2) \sin 2 x \\
&=-\frac{1}{40}[3 D(\sin 2 x)+2 \sin 2 x] \\
&=-\frac{1}{40}[6 \cos 2 x+2 \sin 2 x] \\
&=-\frac{1}{20}[3 \cos 2 x+\sin 2 x] \\
& y=4 e+ \frac{-2 x}{2 x}-\frac{1}{20}(3 \cos 2 x+\sin 2 x)
\end{aligned}
$$

Q. $7 \quad$ Examine the following series

(i) $\sum \frac{1}{n^{p}}$
(ii) $\frac{1}{2}+\frac{1.3}{2.4}+\frac{1.3 .5}{2.4 .6}+\ldots$

Ans (i) Arti 8, page 634 of text book Engg Mathematic by N P Bali
(ii) Ex 1, page 652 of text book Eng Mathematic by NP Bali
Q. 8 a. Obtain the Inverse Laplace Transform of $\cot ^{\mathbf{- 1}}\left(\frac{s+3}{2}\right)$

ARiL. CoLas

som
We chow that, $w^{\prime}[f(s)]=-\frac{1}{t} \alpha^{+1}\left[\frac{d}{d s}[(s)]\right.$ d

$$
\therefore \omega^{+1}\left[\cot ^{-1}\left(\frac{s+3}{2}\right)\right]=-\frac{1}{t} \omega^{2}\left[\frac{d}{d s} \cot ^{-1}\left(\frac{s+3}{2}\right)\right]
$$

$$
=-\frac{1}{t} \alpha^{r \mid}\left\{\frac{-\frac{1}{2}}{1+\left(\frac{f+3}{2}\right)^{2}}\right\}
$$

$$
=\frac{1}{-2 t} L^{r}\left\{\frac{4}{4+(s+3)^{2}}\right\}
$$

$$
=\frac{1}{t^{n}} \omega^{2}\left\{\frac{2}{2^{2}+(s+3)^{2}}\right\}
$$

$$
=\frac{1-3 t}{t}-1\left\{\frac{2}{2^{2}+s^{2}}\right\}
$$

b. Find the Laplace transform of $\frac{\cos a t-\cos b t}{t}$
Q.ib. Som:

Here $f(t)=\frac{\cos a t-\cos b t}{t}$
We know that, $L(\cos a t-\cos b t)=L \cos a t-L \cos b t$

$$
\left.\alpha\left\{\frac{\cos a t-\cos b t}{t}\right\}_{c}=\int_{s}^{\infty}\left(\frac{s}{s^{2}+a^{2}}-\frac{s}{s^{2}+a^{2}}-\frac{s}{s^{2}+b^{2}}\right) d s-2 m_{M}+b^{2} \right\rvert\, d m_{M A}
$$

$$
=\left[\frac{1}{2} \log \left(s^{2}+a^{2}\right)-\frac{1}{2} \log \left(s^{2}+b^{2}\right)\right]_{s}^{\infty}
$$

$$
=\frac{1}{2}\left[\log \frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right]_{s}^{\infty}=\frac{1}{2}\left[\log \frac{1+\frac{a^{2}}{s^{2}}}{1+\frac{b^{2}}{s 2}}\right]_{s}^{\infty}
$$

$$
=\frac{1}{2} \log 1-\frac{1}{2} \log \frac{1+\frac{a^{2}}{s^{2}}}{1+\frac{b^{2}}{s^{2}}}
$$

$$
=0-\frac{1}{2} \log \frac{s^{2}+a^{2}}{s^{2}+b^{2}}(\log 1=0)
$$

$$
=\frac{1}{2} \log \frac{s^{2}+b^{2}}{s^{2}+a^{2}} \quad \text { Ans. }
$$

Q. 9 a. Obtain the Laplace transform of $t^{2} e^{t} . \sin 4 t$.

Qiga. Som

$$
d(\sin 4 t)=\frac{4}{s^{2}+16}
$$

$$
\omega\left(e^{t} \sin 4 t\right)=\frac{4}{(s-1)^{2}+16} \quad g M A L
$$

$$
L\left(t e^{t} \sin 4 t\right)=-\frac{d}{d s}\left(\frac{4}{s^{2}-2 s+17}\right)=\frac{4(2 s-2)}{\left(s^{2}-2 s+17\right)^{2}} g M A
$$

$$
L\left(t^{2} e^{t} \sin 4 t\right)=-\frac{d}{d s}\left(\frac{4(2 s-2)}{\left(s^{2} 2 s+17\right)^{2}}\right)
$$

$$
=-4 \frac{\left(s^{2}-2 s+17\right)^{2} 2-(2 s-2) 2\left(s^{2}-2 s+17\right)(2 s-2)}{\left(s^{2}-2 s+17\right)^{4}}
$$

$$
=-4 \frac{\left(s^{2}-2 s+17\right) 2-2(2 s-2)^{2}}{\left(s^{2}-2 s+17\right)^{3}}
$$

$$
=\frac{-4\left(2 s^{2}-4 s+34-8 s^{2}+16 s-8\right)}{2(+17)^{3}}
$$

$$
=\frac{-4\left(-6 s^{2}+12 s+26\right)}{\left(s^{2}-2 s+17\right)^{3}}=\frac{8\left[3 s^{2}-6 s-13\right]}{\left(s^{2}-2 s+17\right)^{3}} \text { Ars }
$$

b. Using the Laplace transforms, find the solution of the initial value problem $\mathbf{y}^{\prime \prime}+$ $9 y=6 \cos 3 t, y(0)=2, y^{\prime}(0)=0$
(a) abb. som

$$
y^{\prime \prime}+9 y=6 \cos 3 t
$$

$$
\begin{aligned}
& {\left[s^{2} y-s y(0)-y(0)\right]+9 y=6 s^{2}+9} \\
& \text { Anting the rales of } y(0) \text { and } y^{\prime}(0) \text { in eq n }(1) \text { when e, }
\end{aligned}
$$

$$
s^{2} y-2 s+9 y=\frac{6 s}{s^{2}+9}-2 s
$$

$$
\left.\left.\begin{array}{rl}
& s^{2} y-2 s+9 y= \\
\Rightarrow & \left(s^{2}+9\right) y=2 s+\frac{6 s}{s^{2}+9}+9 \\
s^{2}+9
\end{array}\right)=\frac{2 s}{s^{2}+9}+\frac{6 s}{\left(s^{2}+9^{2}\right)}{ }^{2}\right)
$$

$$
y=L^{-1}\left\{\frac{2 s}{s^{2}+9}\right\}+L^{-4}\left\{\frac{6 s}{\left.s^{2}+2\right)^{2}}\right\}=2 \cos 3++L^{-1 d} \frac{1}{d s}\left[\frac{-3}{s^{2}+99}\right]
$$

$$
=2 \cos 3 t-t \sin 3 t
$$

TEXT BOOKS

1. Engineering Mathematics - Babu Ram, Pearson Education Limited, 2012
2. Applied Mathematics for Polytechnic, H.K.Dass, 10th Edition, 2012, CBS Publishers \& Distributors, New Delhi
