Q.2a. State and prove Leibnitz theorem for the $\mathbf{n}^{\text {th }}$ derivative of the
product of two function.

$6.2(5)$ Statement:
If 4 uncle aretworfunctions $y x$, then
$\frac{d^{n}(u v)}{d n^{n}}=n_{0} u_{n} v+{ }^{n} c_{1} u_{n-1} v_{1}+c_{2}^{n} u_{n-2} v+\cdots \cdot+\sum_{\gamma}^{n} u_{n-\gamma} v_{1}+\cdots+t_{n}^{n} u v_{n}$
Poof: Pores is by sisuctem

$\frac{d}{d n}(u v)=(u v)_{1}=u_{1} v+u v_{1}=v_{0} u_{1} v+c_{1} u v_{1}$
$\frac{d^{2}}{d_{n}}(U v)=(U v)_{2}=\left(U_{1} v+u_{v_{1}}\right)_{1}=U_{2} v+u_{1} u_{1}+u_{2} v_{2}+u_{1} v_{1}=u_{2} v_{2}+2 u_{1} u_{1}+v_{2} v_{2}$
\therefore Theorem stree for $n=2$
$\begin{aligned}\left.u_{1} \quad \frac{d^{3}}{d n^{3}}(u v)=\mu v\right)_{3} & =\left(u_{2} v+2 u_{1} v_{1}+u v_{2}\right)_{1}=u_{3} v+u_{2} v_{1}+2 u_{2} v_{1}+2 u_{1} v_{2}+u_{1} v_{2}+t \xi_{3} \\ & ={ }^{3} c_{0} u_{3} v+{ }_{c} c_{1} u_{2} v_{1}+3 c_{2} u_{1} v_{2}+3 c_{3} u v_{3}\end{aligned}$
$\therefore \quad \begin{aligned} & { }^{3} c_{2} u_{3} v+{ }^{3} C_{1} u_{2} v_{1}+{ }^{3} c_{2} u_{1} v_{2}+{ }_{3} c_{3} u v_{3} \\ & \therefore \text { Theorem. n tries for } n=3\end{aligned}$
Let the theorem be true for $n=m(s a y), s$ c teal
 Sfferentatuy
$\begin{aligned} \frac{d m-1}{d n^{m-1}}(l u v)= & (U v)={ }_{m+1}^{m} c_{c} u_{m+1} v+{ }^{m} c_{0} u_{m} v_{1}+{ }^{m} c_{1} u_{m} v_{1}+c_{1} c_{1} u_{m-2} v_{2}+\cdots+{ }^{m} c_{m-1} u_{2} \\ & +m c_{m-1} u_{1} v_{m}+c_{m} c_{1} v_{m-}+m_{m} u v_{m+1}\end{aligned}$

 (b) there $y=f(x)=10$. 1. . for offer integral value of n
b. Find the points at which the function $f(x)=(x-1)(x-2)(x-3)$ has a maximum and minimum values.
(b) 4 are
$\therefore \quad \frac{d y}{d x}=(x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2)=3 x^{2}-12 x+11$ For Maxima culm Minima, $\frac{d y}{d x}=0$, ie $3 x^{2}-12 x+11=0 ; \therefore x=\frac{6 \pm \sqrt{3}}{3}$
3 :The givengthesin h_{n} maxims owl Mimimat $n t x=\frac{6 \pm \sqrt{3}}{3}$
Also $\frac{d^{2} y}{d x^{2}}=6 x-12$
The coalition for twi fut he mat is $\frac{d^{2} y}{d n^{2}}=$-he it tests.
and chistanfor min $5 \frac{d^{2} y}{d^{2}}=$ the artie pt,

At $x=\frac{6 \sqrt{3}}{3}$,
$\frac{\sqrt{y}}{n n_{2}}=6\left[\frac{6}{3} \sqrt{3}\right]_{-1}=-2 \sqrt{3}=-$ he, firn $m a d$
Q.3a. Evaluate $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$

23(9). Here $\begin{align*} I & =\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \tag{1}\\ 3 & =\int_{0}^{\pi / 2} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)+\cos \sqrt{\frac{\pi}{2}-x}} d x} \\ & =\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x \end{align*}$ Addmy (1) and (2), $\begin{aligned} 2 I & =\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\operatorname{tas} x}} d x+\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x \\ & =\int_{0}^{\pi / 2} d x=[x]_{0}^{\pi / 2}=\frac{\pi}{2} \end{aligned}$ Hence givenintegral $=I=\frac{\pi}{4}$ b.Integrate $\int \frac{x^{2}-3 x+4}{(x-2)(x+2)(x+4)} d x$ (b) Bypartin froenm, $\frac{x^{2}-2 x+4}{(x-2)(x+2)(x+4)}=\frac{1}{12(x-2)}-\frac{7}{4(x+2)}+\frac{8}{3(x+4)}$ Snteanding $\begin{aligned} & \int \frac{x^{2}-\frac{3 x+4}{(x-2)(x+2)(x+4)}}{}=\frac{1}{12}\left(\frac{x}{x-2}-\frac{7}{4} \int \frac{1}{x+2} d x+\frac{8}{3} \int \frac{1}{x+4} d x\right. \\ &=\frac{1}{12} \log (x-2)-\frac{7}{4} \log (x+2)+\frac{8}{3} \log (x+4) \end{aligned}$
Q. 4 a. Compute the inverse of $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$

6. 4 (6) By lefurixim

$$
A^{-1}=\frac{\operatorname{Adj} A}{|A|} \text {, wher odj } A \text { i trans hase ming mory of }
$$

Here $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right], \quad|A|=\left|\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right|=\left|\begin{array}{ccc}\text { Riscres } & 1 & 0 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right|=1$
$\begin{aligned} & \therefore \bar{A}^{-1}=A d j \cdot A=\text { tremspose y matian } y \text { corf actors } \\ & {[+(-2 x 4)-(2 x i-0)+(2 x+1-1)] }\end{aligned}$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]
\end{aligned}
$$

b.Show that the equations $2 x+y+2 z=1$

$$
\begin{gathered}
x+2 y-z=2 \\
5 x+4 y+3 z=4
\end{gathered}
$$

are consistent and solve them.
(b). Eque causlo written is mentide form

$$
\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & 2 & -1 \\
5 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
$$

$O R_{3}^{\prime}=R_{3}-2 R_{1}-R_{3}, R_{3}^{\prime}=R_{2}-\partial R_{1}$

$$
\left[\begin{array}{ccc}
2 & 1 & 2 \\
-3 & 0 & -5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Evideadly rank of croff matrix $=$ Rank 7 A Angmentad matided $=2 \angle \mathrm{Nr} \% \mathrm{~F}$ Vasibhes
$\therefore e_{i v e n}$ equy are conserstent and thave intinite sals which on なVen hy

$$
\begin{aligned}
& 2 x+y+2 z=1 \\
& \text { and } \\
& -3 x-5 z=0
\end{aligned}
$$

\therefore If $z=k, x=-\frac{5}{3} k, y=1-2 k+\frac{10}{3} k=1+\frac{4}{3} k$
Q.5a. Solve the differential equation:

$$
\frac{d y}{d x}=\frac{y}{x}-\sqrt{\left(\frac{y^{2}}{x^{2}}-1\right)}
$$

Q Sea)

$$
\begin{aligned}
\text { Put } y=v x, \quad \frac{d y}{d x}=v+x \frac{d v}{d x} \\
\therefore \frac{d y}{d x}=v+x \frac{d v}{d x}=\frac{v x}{x}-\sqrt{\frac{v^{2} x^{2}}{x^{2}-1}}
\end{aligned}
$$

or. $\frac{d v}{\sqrt{v^{2}-1}}=-\frac{d x}{x}$
Dnterocing $\log \left[v+\sqrt{v^{2}-1}\right]=-\log x+C$

$$
\text { or } \quad x\left[\frac{y}{x}+\sqrt{\frac{y^{2}}{x^{2}}-1}\right]=\text { coxes } \text { OR } y+\sqrt{y^{2}-x^{2}} \text { : }
$$

5. b. Solve the differential equation:

$$
\mathrm{e}^{-y} \sec ^{2} y \mathbf{d y}=\mathbf{d x}+\mathrm{x} \mathbf{d y}
$$

(b) Riven eq. Can be rewritten us

$$
\frac{d x}{d y}=-x+e^{-y} \sec ^{2} y
$$

OR

$$
\frac{d x}{d y}+x=e^{-y} \sec z y
$$

It linear biff eq in x and its integrating factor is

$$
\text { LI }=e^{\int d y}=e^{y}
$$

\therefore Solingiventy

$$
\begin{aligned}
& x \cdot e^{y}=\int e^{y} \cdot e^{-y} \sec y d y+c \\
& x e^{y}=\tan y+c
\end{aligned}
$$

Q.6a. If S_{1}, S_{2}, S_{3} be the sums of $n, 2 n, 3 n$ terms respectively of an A.P.
show that $S_{3}=3\left(S_{2}-S_{1}\right)$
$Q b(a)$ Let A.P. be $a, a+d, a+2 d$,
$\therefore S_{1}=\frac{n}{2}[2 a+(n-1) d]$
$S_{2}=\frac{2 n}{2}[2 a+(2 n-1) d]$
$S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]$
$\therefore S_{2}-S_{1}=2 \frac{n}{2}[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2 a+(4 n-2-n+1) d]$
$=\frac{n}{2}[2 a+(3 n-1) d]$
Evidently

$$
S_{2}=3\left(S_{2}-S_{1}\right)
$$

b.The sum of first and second terms of a G.P. is $\frac{5}{4}$ and the sum of the fourth and fifth terms is $\mathbf{8 0}$. Find the first term and the common ratio.

$$
\begin{aligned}
& \text { (b) Let the G.P. he } G, a r, a r^{2}, a r^{3}, a r^{4}, \ldots . .
\end{aligned}
$$

$$
\therefore \text { asper given consists ms }
$$

$$
a+a r=\frac{5}{4} \quad-(1)
$$

$$
\text { Sividliq(2)by }(1), \quad \quad \quad a r^{3}+a r^{n}=80 \quad-(2)
$$

Using this value min

$$
r^{3}=64 \text { or } r=4
$$

$$
a=\frac{1}{4}
$$

$$
\text { Hence 18t term }=\frac{1}{4} \text { and } e \cdot \frac{4}{4}=4
$$

Q. 7 a. If $\mathbf{A}+\mathbf{B}+\mathbf{C}=\pi$, show that $\sin \mathbf{A}+\sin \mathbf{B}+\sin \mathbf{C}=4$

$$
\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}
$$

$$
\text { RF(} 5) \quad \sin A+\sin B+\sin C=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}+2 \sin \frac{C}{2} \cos \frac{C}{2}
$$

$$
=2 \sin \frac{\pi-c}{2} \cos \frac{A-B}{2}+2 \sin \frac{c}{2} \cos \frac{c}{2}
$$

$$
=2 \cos \frac{C}{2}\left[\cos \frac{A-B}{2}+\cos \left(\frac{\pi}{2}-\frac{C}{2}\right)\right]
$$

$$
=2 \cos \frac{C}{2}\left[\cos \frac{A-B}{2}+\cos \frac{A+B}{2}\right]
$$

$$
=2 \cos \frac{C}{2}\left[2 \cos \frac{A-B+\frac{A+B}{2}}{2} \cos \frac{\frac{A-B}{2}-\frac{A B}{2}}{2}\right]
$$

$$
=4 \cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2}
$$

b.In any triangle $A B C$, prove that $\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$
(D) By law ㄱ Sines,

$$
\begin{aligned}
& \therefore \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k(\operatorname{say}) \\
& \therefore \quad=\frac{k \sin B-k \sin C}{k \sin B+k \sin C}=\frac{\sin B-\sin C}{\sin B+\sin C} \\
&= \frac{2 \sin \frac{B-c}{2} \cos \frac{B+c}{2}}{2 \sin \frac{B+c}{2} \cos \frac{B-c}{2}}=\tan \frac{B-c}{2} \cdot \cot \frac{B+C}{2} \\
&= \tan \frac{B-c}{2} \cot \frac{\pi-A}{2}=\tan \frac{B-C}{2} \tan \frac{A}{2}
\end{aligned}
$$

Hence $\tan \frac{B-c}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$
Q. 8 a. Find the equation of the line through the point of intersection of $5 x-3 y=1 \& 2 x+3 y=23$ and perpendicular to the line whose equation is $5 x-3 y=1$.

Q 8
(8) Any line t_{8}, the point of intersection of $5 x-3 y-1=0$ and $2 x+3 y-23=0$ is
$5 x-3 y-1+k(2 x+3 y-23)=0$
or $\quad(5+2 k) x+(3 k-3) y-1-23 k=0 \quad$ (1)
This lime is preppendiculer to $5 x-3 y=1$
\therefore Prod of slopes of (1) mod (x) is -1
ie $\left[-\frac{5+2 k}{3 k-3}\right] \cdot\left[\frac{5}{3}\right]=-1$
or $k=-34$
Hencetur head st fine (1) becomes

$$
\begin{array}{r}
(5-2 \times 34) x+(-3 \times 34-3) y-1+23 \times 34=0 \\
63 x+105 y-781=0 \quad \text { Ans. }
\end{array}
$$

b.If p and p^{\prime} be the perpendiculars from the origin upon the straight lines whose equations are

$$
x \sec \theta+y \operatorname{cosec} \theta=\mathbf{a}
$$

and $\quad x \cos \theta-y \sin \theta=a \cos 2 \theta$
Prove that $4 p^{2}+\left(p^{\prime}\right)^{2}=a^{2}$

$$
\begin{aligned}
& \text { (b) Her } \\
& \text { Here } p \text { and } p^{\prime} \text { 'ire pespendiculer from cosign un lines } \\
& x \sec \theta+y \operatorname{cosec} \theta-a=0 \text { and } x \cos \theta-y \sin \theta-a \cos 2 \theta=0 \\
& \therefore \quad \beta=\frac{-a}{\sqrt{\operatorname{sen}^{2} \theta+\operatorname{cosec}^{2} \theta}}=\frac{-a \sin \theta \cos \theta}{\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=-4 \sin \theta \theta \\
& p^{\prime}=\frac{-a \cos 2 \theta}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=-a \cos 2 \theta \\
& \therefore \\
& 4 p^{2}+p^{\prime 2}=4 a^{2} \sin ^{2} \theta \cos ^{2} \theta+a^{2} \cos ^{2} 2 \theta \\
& =a^{2} \sin ^{2} 2 \theta+a^{2} \cos ^{2} 2 \theta=a^{2}
\end{aligned}
$$

Q. 9 a. Find the vertex, focus, axis and the directrix of the parabola

$$
y^{2}=x+2 y-2
$$

Q. G(B) Eqt of pratiolen can berewntten as

$$
y^{2}-2 y+1=x-2+1
$$

or

$$
(y-1)^{2}=x-1 \quad \text { or } Y^{2}=X \text { whes } X=m
$$

b.Show that the sum of the focal distances of any point on an ellipse is constant and equal to the major axis.

$$
\begin{aligned}
& \text { (b) Let } S \text { and } S^{\prime} \text { he the foci and } Z M \text { and } Z^{\prime} m^{\prime} \text { he the } \\
& \text { directrices of the ellipse. } \\
& \text { Cet } P(\text { nay }) \text { ue axypt anthe } \\
& \text { ellexpse. Join PS, PS'. Doop } 1 \text { s } \\
& \text { PM on } \mathrm{zm} \text { aried PM' on } \mathrm{Z}^{\prime} \mathrm{m}^{\prime} \text {, } \\
& \text { PN on maxis } \\
& \therefore \text { focel atstance }=S P=\text { epm } \\
& \therefore \text { Sumaf focal arstances }=S P+S^{\prime} P=e P M \rightarrow e P m^{\prime} \\
& =e N Z+e N Z^{\prime} \\
& =e(c Z-C N)+e\left(C N+C Z^{\prime}\right) \\
& =e\left(\frac{e}{e}-x\right)+e\left(x+\frac{a}{e}\right)=2 a=\text { constant }
\end{aligned}
$$

TEXT BOOK

1. Engineering Mathematics, H. K. Dass, S, Chand and Company Ltd, New Delhi, 2010

2. A Text Book of Comprehensive Mathematics Class XI, Parmanand Gupta, Laxmi Publications, New Delhi

