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 Q.2 a. Mention the characteristics of embedded systems.  
 
Answer:  

Embedded systems have several common characteristics: 
 
1) Single-functioned: An embedded system usually executes only one program, 
repeatedly. For example, a pager is always a pager. In contrast, a desktop system executes 
a variety of programs, like spreadsheets, word processors, and video games, with new 
programs added frequently.1 
 

2) Tightly constrained: All computing systems have constraints on design metrics, but 
those on embedded systems can be especially tight. A design metric is a measure of an  
implementation’s features, such as cost, size, performance, and power. Embedded systems 
often must cost just a few dollars, must be sized to fit on a single chip, must perform fast 
enough to process data in real-time, and must consume minimum power to extend battery 
life or prevent the necessity of a cooling fan. 
 

3) Reactive and real-time: Many embedded systems must continually react to changes in 
the system’s environment, and must compute certain results in real time without delay. 
For example, a car's cruise controller continually monitors and reacts to speed and brake 
sensors. It must compute acceleration or decelerations amounts repeatedly within a 
limited time; a delayed computation result could result in a failure to maintain control of 
the car. In contrast, a desktop system typically focuses on computations, with relatively 
infrequent (from the computer’s perspective) reactions to input devices. In addition, a 
delay in those computations, while perhaps inconvenient to the computer user, typically 
does not result in a system failure. 
 
 
  b. Illustrate with a diagram the working of a single-purpose processor.  
Answer:  

A single-purpose processor is a digital circuit designed to execute exactly one program. 
For example, consider a digital camera. All of the components of a digital camera other 
than the microcontroller are single-purpose processors. The JPEG codec, for example, 
executes a single program that compresses and decompresses video frames. An embedded 
system designer creates a single-purpose processor by designing accustom digital circuit, 
as discussed in later chapters. Many people refer to this portion of the implementation 
simply as the “hardware” portion (although even software requires a hardware processor 
on which to run). Other common terms include coprocessor and accelerator. Using a 
single-purpose processor in an embedded system may result in several design metric 
benefits and drawbacks, which are essentially the inverse of those for general purpose 
processors. Performance may be fast, size and power may be small, and unit-cost may be 
low for large quantities, while design time and NRE costs may be high, flexibility is low, 
unit cost may be high for small quantities, and performance may not match general-
purpose processors for some applications. The use of a single-purpose processor in any 
embedded system represents an exact fit of the desired functionality, nothing more, and 
nothing less. Figure 1 illustrates the architecture of such a single-purpose processor for the 
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example. Since the example counts from one to N, we add an index register. The index 
register will be loaded with N, and will then count down to zero, at which time it will 
assert a status line read by the controller. Since the example has only one other value, we 
add only one register labelled total to the datapath. Since the example’s only arithmetic 
operation is addition, we add a single adder to the datapath. Since the processor only 
executes this one program, we hardwire the program directly into the control logic.  

 
Figure1. Implementing desired functionality on  single-purpose processors 
 
  c. Discuss the optimizing design metrics in the design of embedded 

systems.   
Answer:  

The embedded-system designer must of course construct an implementation that fulfils 
desired functionality, but a difficult challenge is to construct an implementation that 
simultaneously optimizes numerous design metrics. For our purposes, an implementation 
consists of a software processor with an accompanying program, a connection of digital 
gates, or some combination thereof. A design metric is a measurable feature of a system’s 
implementation. Common relevant metrics include: 
 

i. Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE 
cost. 

ii.  NRE cost (Non-Recurring Engineering cost): The monetary cost of designing the system. 
Once the system is designed, any number of units can be manufactured without 
incurring any additional design cost (hence the term “non-recurring”). 

iii.  Size: the physical space required by the system, often measured in bytes for software, 
and gates or transistors for hardware. 

iv. Performance: the execution time or throughput of the system. 

v.  Power: the amount of power consumed by the system, which determines the lifetime of 
a battery, or the cooling requirements of the IC, since more power means more heat. 
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vi.  Flexibility: the ability to change the functionality of the system without incurring heavy 
NRE cost. Software is typically considered very flexible. 

vii. Time-to-market: The amount of time required to design and manufacture the system to 
the point the system can be sold to customers. 

viii.  Time-to-prototype: The amount of time to build a working version of the system, which 
may be bigger or more expensive than the final system implementation, but can be used 
to verify the system’s usefulness and correctness and to refine the system's 
functionality. 

ix. Correctness: our confidence that we have implemented the system’s functionality 
correctly. We can check the functionality throughout the process of designing the 
system, and we can insert test circuitry to check that manufacturing was correct. 

x.  Safety: the probability that the system will not cause harm. 

 Q.3 a. Write a program in assembly language to clear an array M[256]. 
Assuming M starts at location 256 (and thus ends at location 
511).Write the assumptions for the assembly language code.   

Answer:  

            Assumption  R0,R1,R3 are 8 bit registers of the processor. 
MOV R0, #0;  

             MOV R1, #256; // no. of location is256 and it is unsigned 8-bit. 
MOV R3, #256; //Array M starts at memory location 256 
Loop: JZ R1, Stop; // Done if R1=0 
MOV @R3, R0; //load 0 in M[i]where i=(256,511) 
INC R3;// R3 is incremented by 1 so points to next memory address 
DEC R1;// R1 is decremented by 1 as the counter should be decremented after 
each  

                         //operation. 
JMP  Loop; // Jump always 
Stop:End 

 
  b. What are the different stages of execution of instructions?  
Answer:  

 A microprocessor’s execution of instructions consists of several basic stages: 
1. Fetch instruction: the task of reading the next instruction from memory into the 
instruction register. 
2. Decode instruction: the task of determining what operation the instruction in the 
instruction register represents (e.g., add, move, etc.). 
3. Fetch operands: the task of moving the instruction’s operand data into appropriate 
registers. 
4. Execute operation: the task of feeding the appropriate registers through the ALU and 
back into an appropriate register. 
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5. Store results: the task of writing a register into memory. 
If each stage takes one clock cycle, then we can see that a single instruction may take 
several cycles to complete. 
 
  c. Write the benefits of choosing a single purpose processor over a 

general purpose processor.    
Answer:  

A single-purpose processor is a digital system intended to solve a specific computation 
task. The processor may be a standard one, intended for use in a wide variety of 
applications in which the same task must be performed. The manufacturer of such an off-
the-shelf processor sells the device in large quantities. On the other hand, the processor 
may be a custom one, built by a designer to implement a task specific to a particular 
application. An embedded system designer choosing to use a standard single purpose, 
rather than a general-purpose, processor to implement part of a system’s functionality 
may achieve several benefits. First, performance may be fast, since the processor is 
customized for the particular task at hand. Not only might the task execute in fewer clock 
cycles, but also those cycles themselves may be shorter. Fewer clock cycles may result 
from many data path components operating in parallel, from data path components 
passing data directly to one another without the need for intermediate registers (chaining), 
or from elimination of program memory fetches. Shorter cycles may result from simpler 
functional units, less multiplexors, or simpler control logic. For standard single-purpose 
processors, manufacturers may spread NRE cost over many units. Thus, the processor's 
clock cycle may be further reduced by the use of custom IC technology, leading-edge 
IC's, and expert designers, just as is the case with general-purpose processors. Second, 
size may be small. A single-purpose processor does not require a program memory. Also, 
since it does not need to support a large instruction set, it may have a simpler data path 
and controller. Third, a standard single-purpose processor may have low unit cost, due to 
the manufacturer spreading NRE cost over many units. Likewise, NRE cost may be low, 
since the embedded system designer need not design a standard single-purpose processor, 
and may not even need to program it. There are of course tradeoffs. If we are already 
using a general-purpose processor, then implementing a task on an additional single-
purpose processor rather than in software may add to the system size and power 
consumption. We often refer to standard single-purpose processors as peripherals, because 
they usually exist on the periphery of the CPU. However, microcontrollers tightly 
integrate these peripherals with the CPU, often placing them on-chip, and even assigning 
peripheral registers to the CPU's own register space. The result is the common term "on 
chip peripherals," 
 
 Q.4  a. A particular motor operates at 10 revolutions per second when its 

controlling input voltage is 3.7 V. Assume that you are using a 
microcontroller with a PWM whose output port can be set high (5 V) 
or low (0 V). (i) Compute the duty cycle necessary to obtain 10 
revolutions per second. (ii) Provide values for a pulse width and period 
that achieve this duty cycle.  

Answer:  
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The duty cycle  is the percentage of time the signal is high compared to the signal’s 
period. 
Given: Input voltage is 3.7 V. The output port of the PWM can be set high (5 V) or low (0 
V). 
 
(a) 3.7V / 5V = .74 = 74% duty cycle 
(b) There are infinitely many answers. Example:period = 100 ns (pick any reasonable 
value)pulse width = .74 * period = .74 * 100 ns = 74 ns 
 
  b. Describe the working of an UART.   
Answer:  

A UART (Universal Asynchronous Receiver/Transmitter) receives serial data and stores it 
as parallel data (usually one byte), and takes parallel data and transmits it as serial data. 
Such serial communication is beneficial when we need to communicate bytes of data 
between devices separated by long distances, or when we simply have few available I/O 
pins. For our purpose in this section, we must be aware that we must set the transmission 
and reception rate, called the baud rate, which indicates the frequency that the signal 
changes. Common rates include 2400, 4800, 9600, and 19.2k. We must also be aware that 
an extra bit may be added to each data word, called parity, to detect transmission errors -- 
the parity bit is set to high or low to indicate if the word has an even or odd number of 
bits.  Internally, a simple UART may possess a baud-rate configuration register, and two 
independently operating processors, one for receiving and the other for transmitting. The 
transmitter may possess a register, often called a transmit buffer, that holds data to be 
sent. This register is a shift register, so the data can be transmitted one bit at a time by 
shifting at the appropriate rate. Likewise, the receiver receives data into a shift register, 
and then this data can be read in parallel. Note that in order to shift at the appropriate rate 
based on the configuration register, a UART requires a timer. To use a UART, we must 
configure its baud rate by writing to the configuration register, and then we must write 
data to the transmit register and/or read data from the  received register. Unfortunately, 
configuring the baud rate is usually not as simple as writing the desired rate (e.g., 4800) to 
a register. For example, to configure the UART of an 8051, we must use the following 
equation: 
Baudrate = (2smod / 32) *oscfreq / (12 *(256 - TH1))) 
smod corresponds to 2 bits in a special-function register, oscfreq is the frequency of the 
oscillator, and TH1 is an 8-bit rate register of a built-in timer. Note that we could use a 
general-purpose processor to implement a UART completely in software. If we used a 
dedicated general-processor, the implementation would be inefficient in terms of size. We 
could alternatively integrate the transmit and receive functionality with our main program. 
This would require creating a routine to send data serially over an I/O port, making use of 
a timer to control the rate. It would also require using an interrupt service routine to 
capture serial data coming from another I/O port whenever such data begins arriving. 
However, as with the timer functionality, adding send and receive functionality can 
detract from time for other computations. Knowing the number of cycles that each 
instruction requires, we could write a loop that executed the desired number of 
instructions; when this loop completes, we know that the desired time passed. This 
implementation of a timer on a dedicated general-purpose processor is obviously quite 
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inefficient in terms of size. One could alternatively incorporate the timer functionality into 
a main program, but the timer functionality then occupies much of the program’s run 
time, leaving little time for other computations. Thus, the benefit of assigning timer 
functionality to a special-purpose processor becomes evident. 
 
 Q.5 a. Write any two cache replacement policies.  
  
Answer:  

The cache-replacement policy is the technique for choosing which cache block to replace 
when a fully-associative cache is full, or when a set-associative cache’s line is full. Note 
that there is no choice in a direct-mapped cache; a main memory address always maps to 
the same cache address and thus replaces whatever block is already there.  
There are three common replacement policies.  
i. A random replacement policy chooses the block to replace randomly. While simple to 
implement, this policy does nothing to  prevent replacing block that’s likely to be used 
again soon.  
ii. A least-recently used (LRU) replacement policy replaces the block that has not been 
accessed for the longest time, assuming that this means that it is least likely to be accessed 
in the near future. It associates with each page the time of its last use. It does not suffer 
from Belady's anomaly. This policy provides for an excellent hit/miss ratio but requires 
expensive hardware to keep track of the times blocks are accessed.  
iii. A first-in-first-out (FIFO) replacement policy uses a queue of size N, pushing each 
block address onto the queue when the address is accessed, and then choosing the block to 
replace by popping the queue. This policy is easy to understand and implement; but the 
performance is poor. In FIFO, it might happen that adding more pages causes more 
fault.This phenomenon is known as Belady’s anomaly, 
 
  b. From the given following three cache designs, find the one with the 

best performance by calculating the average cost of access. Show all 
calculations.  

 
   (i) 4 Kbyte, 8-way set-associative cache with a 6% miss rate; cache hit 

costs one cycle, cache miss costs 12 cycles  
   (ii) 8 Kbyte, 4-way set-associative cache with a 4% miss rate; cache hit 

costs two cycles, cache miss costs 12 cycles.  
   (iii) 16 Kbyte, 2-way set-associative cache with a 2% miss rate; cache 

hit costs three cycles, cache miss costs 12 cycles.  
Answer:  

i) 4 Kb, 8-way set-associative cache with a 6% miss rate; cache hit costs 1 cycle,cache 
miss costs 12 cycles.miss rate = .06hit rate = 1- miss rate = .94.94 * 1cycle (hit) + .06 * 12 
cycles (miss) = .94 + .72 = 1.66 cycles avg. 
 
ii.) 8 Kb, 4-way set-associative cache with a 4% miss rate; cache hit costs 2 cycles,cache 
miss costs 12 cycles.miss rate = .04hit rate = 1 – miss rate = .96.96 * 2 cycles (hit) + .04 * 
12 cycles (miss) = 1.92 + .48 = 2.4 cycles avg. 
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iii.) 16 Kb, 2-way set-associative cache with a 2% miss rate; cache hit costs 3 
cycles,cache miss costs 12 cycles.miss rate = .02hit rate = 1 – miss rate = .98.98 * 3 
cycles (hit) + .02 * 12 cycles (miss) = 2.94 + .24 = 3.18 cycles avg. 
 
  c. What is DRAM?    
 

Answer:  

Dynamic random access memory (DRAM) is a type of random access memory that stores 
each bit of data in a separate capacitor within an integrated circuit. Since real capacitors 
leak charge, the information eventually fades unless the capacitor charge is refreshed 
periodically. Because of this refresh requirement, it is a dynamic memory as opposed to 
SRAM and other static memory. DRAM is usually arranged in a rectangular array of 
charge storage cells consisting of one capacitor and transistor per data bit. The figure to 
the right shows a simple example with a 4 by 4 cell matrix. Modern DRAM matrices are 
many thousands of cells in height and width. The long horizontal lines connecting each 
row are known as word-lines. Each column of cells is composed of two bit-lines, each 
connected to every other storage cell in the column. 
 
The main memory (the "RAM") in personal computers is Dynamic RAM (DRAM), as is 
the "RAM" of home game consoles (PlayStation, Xbox 360), laptop, notebook and 
workstation computers. The advantage of DRAM is its structural simplicity: only one 
transistor and a capacitor are required per bit, compared to six transistors in SRAM. This 
allows DRAM to reach very high densities. Unlike flash memory, it is volatile memory 
(cf. non-volatile memory), since it loses its data when power is removed. The transistors 
and capacitors used are extremely small—millions can fit on a single memory chip. 
 
 Q.6   a. Illustrate the functioning of two protocol control methods:   
   (i) Strobe  
   (ii) Handshake   
Answer:  

Control methods are schemes for initiating and ending the transfer. Two of the most 
common methods are strobe and handshake. In a strobe protocol, the master uses one 
control line, often called the request line, to initiate the data transfer, and the transfer is 
considered to be complete after some fixed time interval after the initiation. For example, 
Figure 2(a) shows a strobe protocol with a master wanting to receive data from a servant. 
The master first asserts the request line to initiate a transfer. The servant then has time 
taccess ,to put the data on the data bus. After this time, the master reads the data bus, 
believing the data to be valid. The master than de-asserts the request line, so that the 
servant can stop putting the data on the data bus, and both actors are then ready for the 
next transfer. An analogy is a demanding boss who tells an employee "I want that report 
(the data) on my desk (the data bus) in one hour (taccess)," and merely expects the report to 
be on the desk in one hour. 
The second common control method is a handshake protocol, in which the master uses a 
request line to initiate the transfer, and the servant uses an acknowledge line to inform the 
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master when the data is ready. For example, Figure 2(b) shows a handshake protocol with 
a receiving master. The master first asserts the request line to initiate the transfer. The 
servant takes however much time is necessary to put the data on the data bus, and then 
asserts the acknowledge line to inform the master that the data is valid. The master reads 
the data bus and then de-asserts the request line so that the servant can stop putting data 
on the data bus. The servant de-asserts the acknowledge line, and both actors are then 
ready for the next transfer. In our boss-employee analogy, a handshake protocol 
corresponds to a more tolerant boss who tells an employee "I want that report on my desk 
soon; let me know when it’s ready."  
 
A handshake protocol can adjust to a servant (or servants) with varying response times, 
unlike a strobe protocol. However, when response time is known, a handshake protocol 
may be slower than a strobe protocol, since it requires the master to detect the 
acknowledgement before getting the data, possibly requiring an extra clock cycle if the 
master is synchronizing the bus control signals. A handshake also requires an extra line 
for acknowledge. 

 
Figure2. Two protocol control methods: (a) strobe, (b) handshake 
 
  b. Discuss the steps of Arbitration using a priority arbiter.  
Answer:  

One arbitration method uses a single-purpose processor, called a priority arbiter. We 
illustrate a priority arbiter arbitrating among multiple peripherals using vectored interrupt 
to request servicing from a microprocessor, as illustrated in Figure 3. Each of the 
peripherals makes its request to the arbiter. The arbiter in turn asserts the microprocessor 
interrupt, and waits for the interrupt acknowledgment. The arbiter then provides an 
acknowledgement to exactly one peripheral, which permits that peripheral to put its 
interrupt vector address on the data bus (which, as you’ll recall, causes the microprocessor 
to jump to a subroutine that services that peripheral). Priority arbiters typically use one of 
two common schemes to determine priority among peripherals: fixed priority or rotating 
priority. In fixed priority arbitration, each peripheral has a unique rank among all the 
peripherals. The rank can be represented as a number, so if there are four peripherals, each 
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peripheral is ranked 1, 2, 3 or 4. If two peripherals simultaneously seek servicing, the 
arbiter chooses the one with the higher rank. 
 
In rotating priority arbitration (also called round-robin), the arbiter changes priority of 
peripherals based on the history of servicing of those peripherals. For example, one 
rotating priority scheme grants service to the least-recently serviced of the contending 
peripherals. This scheme obviously requires a more complex arbiter. We prefer fixed 
priority when there is a clear difference in priority among peripherals. However, in many 
cases the peripherals are somewhat equal, so arbitrarily ranking them could cause high-
ranked peripherals to get much more servicing than low-ranked ones. Rotating priority 
ensures a more equitable distribution of servicing in this case. 

 
Figure3. Arbitration using a priority arbiter. 
 
  c. What are Interrupts? What is an ISR? How is it invoked?   
Answer:  

Suppose a program running on a microprocessor must, among other tasks, read and 
process data from a peripheral whenever that peripheral has new data; such processing is 
called servicing. If the peripheral gets new data at unpredictable intervals, then how can 
the program determine when the peripheral has new data? The most straightforward 
approach is to interleave the microprocessor’s other tasks with a routine that checks for 
new data in the peripheral, perhaps by checking for a 1 in a particular bit in a register of 
the peripheral. This repeated checking by the microprocessor for data is called polling. 
Polling is simple to implement, but this repeated checking wastes many clock cycles, so 
may not be acceptable in many cases, especially when there are numerous peripherals to 
be checked. We could check at less-frequent intervals, but then we may not process the 
data quickly enough. 
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To overcome the limitations of polling, most microprocessors come with a feature called 
external interrupt. A microprocessor with this feature has a pin, say Int. At the end of 
executing each machine instruction, the processor’s controller checks Int. If Int is 
asserted, he microprocessor jumps to a particular address at which a subroutine exists that 
services the interrupt. This subroutine is called an Interrupt Service Routine, or ISR. Such 
I/O is called interrupt-driven I/O. One might wonder if interrupts have really solved the 
problem with polling, namely of wasting time performing excessive checking, since the 
interrupt pin is "polled" at the end of every microprocessor instruction. However, in this 
case, the polling of the pin is built right into the microprocessor’s controller hardware, and 
therefore can be done simultaneously with the execution of an instruction, resulting in no 
extra clock cycles. There are two methods by which a microprocessor using interrupts 
determines the address, known as the interrupt address vector, at which the ISR resides. 
In some processors, the address to which the microprocessor jumps on an interrupt is 
fixed. The assembly programmer either puts the ISR there, or if not enough bytes are 
available in that region of memory, merely puts a jump to the real ISR there. 
 
 Q.7 a. Give an example to use Semaphore as a signalling device.  
 
Answer: Refer article 6.3, pages 162-163 from Text-Book- II 
 
  b. What are the problems of shared data and how are they removed?  
Answer: Refer article 6.3, pages 147, 148, 153-155 from Text-Book- II 
 
  c. Explain the function of a scheduler.    
Answer:  

Scheduling is the process of controlling and prioritizing messages sent to a processor.  An 
internal operating system program, called the scheduler, performs this task. The goal is 
maintaining a constant amount of work for the processor, eliminating highs and lows in 
the workload and making sure each process is completed within a reasonable time frame. 
While scheduling is important to all systems, it is especially important in a real-time 
system. 
Since nearly every operation on a computer has at least a small amount of processor time 
involved, the processor can be a major source of slowdowns and bottlenecks. In order to 
alleviate the strain on the processor, and make sure tasks are completed in a timely 
manner, most operating systems use some form of task scheduling. The operating system 
scheduling process varies based on the system, but they tend to fall within familiar 
categories. 
Scheduling is typically broken down into three parts: long-, mid- and short-term 
scheduling. Not every operating system fully uses each type — midterm and long-term 
are often combined — but they will use some combination of them. Each type of 
scheduling provides a slightly different benefit to the system. 
 
Long-term scheduling revolves around admitting programs to the scheduling process. 
When a new program initiates, the long-term scheduler determines if there is enough 
space for the new entrant. If there isn’t, then the scheduler delays the activation of the 
program until there is enough room. 
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 Q.8   a. What is a pipe?   
 

Answer: Refer article 7.1 page 181 from Text Book- II 
    
  b. Discuss the rules to be followed by Interrupt Routines in an RTOS 

environment.    
 
Answer:     Refer article 7.5, Pages 199-202 from Text Book- II 
 
  c. Write a pseudocode to delay a task by using RTOS delay Function.  
 
Answer:     Refer article 7.2, page 185 from Text-Bok-II 
 
 
 Q.9   a. What is hard real time scheduling?    
 

Answer:  

A real-time system is one that must process information and produce a response within a 
specified time, else risk severe consequences, including failure. That is, in a system with a 
real-time constraint it is no good to have the correct action or the correct answer after a 
certain deadline. A system can be defined to be a hard real-time system if the damage has 
the potential to be catastrophic (i.e. where the consequences are incommensurably greater 
than any benefits provided by the service being delivered in the absence of failure like 
 (aircraft crashing, car skidding, patient dying before corrective action is performed) ). 
 
  b. What do you mean by encapsulating semaphore? Write a program to 

show how a semaphore is encapsulated.   
Answer:    II(8.4 page 244-247) 

 
  c. Discuss briefly about the ways by which memory space can be 

conserved.   
Answer:     II(8.6, page 254-255) 
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