Q.2a. Calculate the voltage $V_{A B}$ across terminals A and B in the network, shown in Fig 3.

Fig. 3

Fig. 4

Ans:
The circuit of Fig. 2 can be redrawn as shown in Fig.2.1(a)

Fig.2.1(a)
In loop XAYZ, loop current I_{1} as shown in Fig2.1(a) is

$$
I_{1}=\frac{6}{6+4}=\frac{6}{10}=0.6 \mathrm{~A}
$$

In loop BCED, loop current I_{2} as shown in Fig.2.1(a) is

$$
I_{2}=\frac{12}{4+10}=\frac{12}{14}=0.86 \mathrm{~A}
$$

$V_{A}=$ voltage drop across 4Ω resistor is

$$
V_{A}=I_{1} \times 4 \Omega=0.6 \times 4=2.4 \mathrm{~V}
$$

$V_{B}=$ voltage drop across 4Ω resistor is

$$
V_{B}=I_{2} \times 4 \Omega=0.86 \times 4=3.44 \mathrm{~V}
$$

Therefore,
The voltage between points A and B is the sum of voltages as shown in Fig.2.1(b)

Fig.2.1(b)
Hence, $V_{A B}=-2.4+12+3.44=13.04 \mathrm{~V}$
b. Using source transformation, calculate the current i_{x} flowing in the circuit shown in Fig 4.

Fig. 3
As shown in Fig. (a), we transform the dependent current source to a voltage source,

(a)

(b)

(c)

In Fig. (b), $50|\mid 50=25$ ohms. Applying KVL in Fig. (c).

$$
-60+40 \mathrm{i}_{\mathrm{x}}-2.5 \mathrm{i}_{\mathrm{x}}=0, \text { or } \mathrm{i}_{\mathrm{x}}=1.6 \mathrm{~A}
$$

Q. 3 a. After steady-state current is established in the R-L circuit shown in Fig. 5 with switch S in position ' a ', the switch is moved to position ' b ' at $t=0$. Find $i_{L}(0+)$ and $i(t)$ for $t>0$. What will be the value of $i(t)$ when $t=4$ seconds?(8)

Fig. 5

Ans:
When the switch ' S ' is in position 'b', Kirchhoff's Voltage Law (KVL) gives
$L \frac{d i}{d t}+R_{1} i+R_{2} i=0$
But from the Fig.7, $L=4 H, R_{1}=2 \Omega$ \& $R_{2}=2 \Omega$
By substituting these values in equation (1), we get
$4 \frac{d i}{d t}+2 i+2 i=0$
$4 \frac{d i}{d t}+4 i=0 \quad \Rightarrow \frac{d i}{d t}+i=0$
By applying Laplace Transform to the equation (2), we get
$S I(s)-i\left(o^{+}\right)+I(s)=0$
$I(s)(s+1)=i\left(o^{+}\right)$
Now, the current just before switching to position 'b' is given by (shown in Fig.4.8)

Fig.4. 8

$$
i\left(O^{-}\right)=\frac{V}{R}=\frac{2}{2}=1 \mathrm{Amp}
$$

The current $i\left(o^{+}\right)$after switching to position ' b ' must also be 1 amp , because of the presence of inductance L in the circuit. Therefore, the equation (3) will become

$$
\begin{align*}
I(s)(s+1) & =i\left(o^{+}\right) \\
I(s)(s+1) & =1 \Rightarrow I(s)=\frac{1}{s+1} \tag{4}
\end{align*}
$$

On taking Laplace Transform to equation (4), we get $i(t)=e^{-t}$
When $t=4$ seconds, finding of $i(t)$: the value of $i(t)$ will be $i(t)=e^{-4}$.
b. Determine the amplitude and phase for $F(j 2)$ from the pole-zero plot in s-plane for the network function $F(s)=\frac{4 s}{\left(s^{2}+2 s+2\right)}$

Ans:
The given network function is $F(s)=\frac{4 s}{s^{2}+2 s+2}$
In factored form, $\mathrm{F}(\mathrm{s})$ will become as

$$
F(s)=\frac{4 s}{(s+1+j 1)(s+1-j 1)}
$$

F (s) has (i) Zero at $\mathrm{s}=0$
(ii) Poles are located at $(-1+\mathrm{j} 1) \&(-1-\mathrm{j} 1)$

From the poles and zeros of $\mathrm{F}(\mathrm{s})$, draw vectors to the point $j w=2$, as shown in Fig.5.1.

Fig.5.1. Pole-Zero Diagram
\rightarrow
From the pole-zero diagram, it is clear that Magnitude at $\mathrm{F}(\mathrm{j} 2)$ is calculated as

$$
M(j 2)=4\left(\frac{2}{\sqrt{2} \times \sqrt{10}}\right)=1.78 \quad \text { and }
$$

$$
\begin{aligned}
& \text { Phase at } \mathrm{F}(j 2) \text { is calculated as } \\
& \phi(j 2)=90^{\circ}-45^{\circ}-71.8^{\circ}=-26.8^{\circ}
\end{aligned}
$$

Q. 4 a. Switch K in the circuit shown in Fig. 6 is opened at $t=0{ }^{+}$Draw the Laplace transformed network for $t>0^{+}$and find the voltages $V_{1}(t)$ and $V_{2}(t), t>0^{+}$.

Fig. 6
Ans:
The Laplace transformed network for $t>0+$ is shown in Fig 5 .

Node V_{1} :

$$
\begin{equation*}
\frac{-i_{L}\left(0^{-}\right)}{S}+C V_{C}\left(0^{-}\right)=\left(S C+\frac{1}{S L}\right) V_{1}(S)-\frac{1}{S L} V_{2}(S) \tag{1}
\end{equation*}
$$

and Node V_{2} :

$$
\begin{equation*}
\frac{i_{L}\left(0^{-}\right)}{S}=-\frac{1}{S L} V_{1}(S)+\left(\frac{1}{S L}+G\right)+V_{2}(S) \tag{2}
\end{equation*}
$$

Since prior to opening of switch the network has been in steady-state, then we have $V_{C}\left(0^{-}\right)=1 V$ and $I_{L}\left(0^{-}\right)=1 A$. By substituting the numerical values in eqns (1) \& (2) we C have

$$
\begin{align*}
& 1+\frac{1}{S}=\left(S+\frac{1}{S}\right) V_{1}(S)-\frac{2}{S} V_{2}(S) \tag{3}\\
& \frac{1}{S}=\frac{2}{S} V_{1}(S)+\left(\frac{2}{S}+1\right) V_{2}(S) \tag{4}
\end{align*}
$$

Solving the equations (3) \& (4) for $V_{1}(S) \& V_{2}(S)$ we have

$$
\begin{align*}
& V_{1}(S)=\frac{S+1}{\left(S^{2}+2 S+2\right)}=\frac{S+1}{(S+1)^{2}+1} \tag{5}\\
& V_{2}(S)=\frac{S+2}{\left(S^{2}+2 S+2\right)}=\frac{S+2}{(S+1)^{2}+1}
\end{align*}
$$

b. In the network shown in Fig. 7 , the switch ' K ' is moved from position ' a ' to position ' b ' at $\mathbf{t}=\mathbf{0}$, a steady state having previously been established at position ' a '. Solve the current $i(t)$ using the Laplace transformation method

Fig. 7

Ans:
KVL to loop of v and series R-L-C with $\mathrm{i}(\mathrm{t}) \Rightarrow V=L \frac{d i}{d t}+R i+\frac{1}{C} \int i d t$
Differentiation $\Rightarrow O=L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C} \underset{-}{L} O=\left(s^{2} L+R s+\frac{1}{C}\right) I(s)$.
\therefore Roots of $s^{2}+\frac{R}{L} s+\frac{1}{L C}=0 \Rightarrow s_{1,2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}=-\alpha \pm \beta$ (say).
Where $\alpha=\frac{R}{2 L}, \omega_{0}^{2}=\frac{1}{L C}$, and $\beta=\sqrt{\alpha^{2}-\omega_{0}^{2}}$.
\therefore Transient current
$\ddot{i}(t)=A e^{s, t}+B e^{s_{2} t}, A$ \qquad (1) $(\mathrm{A}, \mathrm{B} \longrightarrow$ constants, derived usint inital conditions)
Q. 5 a. Determine the equivalent Norton network at the terminals a and b of the circuit shown in Fig. 8 below.

Fig. 8

Fig. 9

Ans:

By writing loop equations for the circuit shown

$$
-V_{1}+V_{c}+g_{m} V_{c} R_{1}+i_{1}\left(R_{1}+R_{2}\right)=0
$$

OR $i_{1}\left(R_{1}+R_{2}\right)=V_{1}-V_{c}\left(1+g_{m} R_{1}\right)$
OR $\quad i_{1}=\frac{V_{1}-V_{c}\left(1+g_{m} R_{1}\right)}{\left(R_{1}+R_{2}^{\prime}\right)}$
Thevenin's Impedance for the circuit is given by
$Z_{T h}=\frac{R_{1}+R_{2}}{1+S C\left(R_{1}+R_{2}\right)+g_{m} R_{1}}$
OR $\quad I_{S C}=V_{1}(S) \cdot \frac{\left[S C\left(R_{1}+R_{2}\right)+g_{m} R_{1}\right]}{R_{1}+R_{2}}$

Consider the point A (the reference point) at ground potential,
$V_{A}=\frac{5.2}{5.2+7.1} \times(100 v)=\frac{5.2}{12.3} \times(100 v)=42.27$ volts
Similarly, $V_{B}=\frac{10.9}{10.9+19.6} \times(100 v)=\frac{10.9}{30.5} \times(100 v)=35.73$ volts
Therefore, $V_{T h}=V_{C D}=42.27-35.73=6.53$ volts
Now, apply the second step of Thevenin's Theorem, to find $R_{T h}$. For finding of $R_{T h}$, short the points C \& D together, that is replace the voltage generator by its internal resistance (considered here as a short) and measure the resistance between points A and B. This is illustrated in Fig.

$$
\begin{aligned}
R_{T h} & =(5.2 \| 7.1)+(10.9 \| 19.6) \\
& =\frac{5.2 \times 7.1}{5.2+7.1}+\frac{10.9 \times 19.6}{10.9 \times 19.6}=\frac{36.92}{12.3}+\frac{213.64}{30.5}=10 \Omega
\end{aligned}
$$

The Maximum Power is

$$
P_{R(M a x)}=I_{R}^{2} \cdot R=\frac{V_{s}^{2}}{4 R^{2}}(R)=\frac{V_{s}^{2}}{4 R}=\frac{(6.53)^{2}}{4 \times 10}=1.066 \mathrm{~W}
$$

Q.6a. Test the following polynomial for the Hurwitz property.

$$
P(s)=s^{4}+s^{3}+2 s^{2}+3 s+2
$$

(i) The even patte (s) and odd part vis) un an o......

$$
e(S)=S^{4}+2 S^{2}+2
$$

$$
\text { And } o(S)=S^{3}+3 S
$$

Continued fraction expansion. $F_{1}(S)=\frac{e(S)}{o(S)}$ can be obtained by dividing e(S) by $o(S)$ and
then investing and dividing again as follows:-

$$
\begin{aligned}
& S^{2}+3 S \\
& \frac{S^{4}+2 S^{2}+2}{s^{4}+3 S^{2}}\left.-S^{2}+2\right) \\
& \frac{-S^{2}}{\frac{S^{3}+3 S}{s^{2}-2 S}} 5 \\
& \frac{2 S}{\frac{-S^{2}+2}{x}} \sqrt{\frac{5 S}{5}}\left(\frac{5}{2} s\right.
\end{aligned}
$$

Hence continued expansion $F_{1}(S)$ is
$F_{1}(S)=\frac{e(S)}{o(S)}=S+\frac{1}{-S+\frac{1}{-\frac{S}{5}+\frac{1}{\frac{5}{2} S}}}$
Since two quotient terms -1 and $-\frac{1}{5}$ out of the total quotient terms $1,-1,-\frac{1}{5}$ and $-\frac{5}{2}$ are negative. Therefore, $F_{1}(S)$ is not Hurwitz.

$$
S^{3}+5 S^{2}+9 S+3 \text { is Positive real function.(8) }
$$

b. Determine if the function $F(s)=\frac{s^{3}+5 s^{2}+9 s+3}{s^{3}+4 s^{2}+7 s+9}$ is Positive real function.
b. Determine if the function $\mathrm{F}(\mathrm{s})=\frac{S^{3}+5 S^{2}+9 S+3}{S^{3}+4 S^{2}+7 S+9}$ is Positive real function.(8)

Ans:
Ans:
The given function is $F(s)=\frac{s^{3}+5 s^{2}+9 s+3}{s^{3}+4 s^{2}+7 s+9}$

Now let us proceed with the testing of the function $F(s)$ for positive realness:-
(i) Since all the coefficients in the numerator and denominator are having positive
values, hence, for real value of $\mathrm{S}, \mathrm{Z}(\mathrm{s})$ is real.
(ii) To find whether the poles are on the left half of the S-plane, let us apply the Hurwitz
(ii) To find whether the poles are using continued fraction method.

Let $P(s)=s^{3}+4 s^{2}+7 s+9=M_{2}(s)+N_{2}(s)$
Where $M_{2}(s)=4 s^{2}+9$ and $N_{2}(s)=s^{3}+7 s$.

$$
\begin{aligned}
& \varphi(s)=\frac{N_{2}(s)}{M_{2}(s)}=\frac{s^{3}+7 s}{4 s^{2}+9} \\
& 4 s ^ { 2 } + 9 \longdiv { s ^ { 3 } + 7 s } \begin{array} { l }
{ \frac { s } { 4 } + 9 \frac { s } { 4 } }
\end{array} \frac { 1 9 s } { 4 } \sqrt { \frac { 4 s ^ { 2 } + 9 } { 4 s ^ { 2 } } (\frac { 1 6 } { 1 9 } s } \sqrt { \frac { 1 9 s } { 4 } (\frac { 1 9 s } { 4 \times 9 } }
\end{aligned}
$$

Since all the quotients are positive in the continued fraction expansion, hence, the polynomial of $\mathrm{Z}(\mathrm{s})$ in the denominator is Hurwitz.
(iii) In order to find whether $R_{e} Z(j \omega) \geq 0$ for all ω, let us adopt slightly more mathematical manipulation.
Let $F(s)=\frac{M_{1}(s)+N_{1}(s)}{M_{2}(s)+N_{2}(s)}$ where
$M_{1}(s)=5 s^{2}+3 ; N_{1}(s)=s^{3}+9 s ;$
$M_{2}(s)=4 s^{2}+9$ and $N_{2}(s)=s^{3}+7 s$

Rationalising,

$$
F(s)=\frac{M_{1}+N_{1}}{M_{2}+N_{2}} \cdot \frac{M_{2}-N_{1}}{M_{2}-N_{2}}
$$

$$
=\frac{M_{1} M_{2}-N_{1} N_{2}}{M_{2}{ }^{2}-N_{2}^{2}}+\frac{N_{1} M_{2}-M_{1} N_{1}}{M_{2}^{2}-N_{2}^{2}}
$$

Here, even part of $\mathrm{F}(\mathrm{s})$ is $\frac{M_{1} M_{2}-N_{1} N_{2}}{M_{2}{ }^{2}-N_{2}{ }^{2}}$
$\therefore \operatorname{Re}$ al $F(j \omega)=\left.\frac{M_{1} M_{2}-N_{1} N_{2}}{M_{2}{ }^{2}-N_{2}{ }^{2}}\right|_{s=j \omega}=\frac{D(s)}{M_{2}{ }^{2}-N_{2}{ }^{2}}$
Since, $\left(M_{2}{ }^{2}-N_{2}{ }^{2}\right)$ is always positive for $s=j \omega, F(j \omega) \geq 0$ provided $D(j \omega) \geq 0$ for any ω.
In this problem,
$D(s)=M_{1} M_{2}-N_{1} N_{2}=\left(5 s^{2}+3\right)\left(4 s^{2}+9\right)-\left(s^{3}+9 s\right)\left(s^{3}+7 s\right)$
Or $D(s)=20 s^{4}+45 s^{2}+12 s^{2}+27-s^{6}-7 s^{4}-9 s^{4}-63 s^{2}$

$$
=-s^{6}+4 s^{4}-6 s^{2}+27
$$

Therefore, $D(j \omega)=-(j \omega)^{6}+4(j \omega)^{4}-6(j \omega)^{2}+27$
Or $D(j \omega)=\omega^{6}+4 \omega^{4}+6 \omega^{2}+27$
i.e., $D(j \omega)>0$ for any value of ω. Thus, $Z(j \omega) \geq 0$ for any value of ω, The above three ((i),(ii), \& (iii)) tests certify that the given function $F(s)$ is a PR function.
Q. 7 a. Following short circuit currents and voltages are obtained experimentally for a two port network. Determine Y parameters.
(i) With output short circuited $I_{1}=5 \mathrm{~mA}, I_{2}=-0.3 \mathrm{~mA}, V_{1}=25 \mathrm{~V}$
(ii) With input short circuited $I_{1}=-5 \mathrm{~mA}, I_{2}=-10 \mathrm{~mA}, V_{2}=30 \mathrm{~V}$

Ans:
The given short circuit currents and voltages, when the output is short-circuited i.e. when $V_{2}=0$ are
$I_{1}=5 \mathrm{~mA}$

$$
; I_{2}=-0.3 \mathrm{~mA} \text { and } V_{1}=\left.25 \mathrm{~V}\right|_{\text {when } V_{2}=0}
$$

And the given short circuit currents and voltages, when the inupt is short-circuited i.e., when $V_{1}=0$ are

$$
I_{1}=-5 \mathrm{~mA} ; I_{2}=10 \mathrm{~mA} \text { and } V_{2}=\left.30 \mathrm{~V}\right|_{\text {when } V_{1}=0}
$$

Therefore, the Y-parameter equations are

$$
I_{1}=Y_{11} \cdot V_{1}+Y_{12} \cdot V_{2} \text { and }
$$

$$
I_{2}=Y_{21} \cdot V_{1}+Y_{22} \cdot V_{2}
$$

Hence $Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=\frac{5 \mathrm{~mA}}{25 \mathrm{volts}}=0.2 \times 10^{-3} \mathrm{mho}$

$$
Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0}=\frac{-0.3 \mathrm{~mA}}{25 \text { volts }}=-0.012 \times 10^{-3} \mathrm{mho}
$$

$$
Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}=\frac{10 \mathrm{~mA}}{30 \text { volts }}=0.333 \times 10^{-3} \mathrm{mho}
$$

$$
Y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0}=\frac{-5 \mathrm{~mA}}{30 \text { volts }}=-0.166 \times 10^{-3} \mathrm{mho}
$$

Ans:
The Z-parameters of a two-port network are given by
$V_{1}=Z_{11} I_{1}+Z_{12} I_{2}$
------------- (1) and
$V_{2}=Z_{21} I_{1}+Z_{22} I_{2}$

Where $Z_{11}, Z_{12}, Z_{21}, Z_{22}$ are called Z-Parameters or impedance (z) parameters.
These parameters can be represented by matrix form as

$$
\left[\begin{array}{l}
V_{1} \tag{3}\\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

From equation (3), the curremit t_{1} anu $t_{2} \ldots \ldots \ldots \ldots$.

$$
\begin{align*}
& I_{1}=\left[\begin{array}{ll}
V_{1} & Z_{12} \\
V_{2} & Z_{22}
\end{array}\right] / \Delta_{Z} \tag{4}\\
& I_{2}=\left[\begin{array}{ll}
Z_{11} & V_{1} \\
Z_{22} & V_{2}
\end{array}\right] / \Delta_{Z} \tag{5}
\end{align*}
$$

Where Δ_{Z} is the determinant of Z matrix given by

$$
\Delta_{Z}=\left[\begin{array}{ll}
Z_{11} & Z_{12} \tag{6}\\
Z_{21} & Z_{22}
\end{array}\right]
$$

From equations (4) and (5), we can write

$$
\begin{align*}
& I_{1}=\frac{Z_{22}}{\Delta_{z}} V_{1}-\frac{Z_{12}}{\Delta_{z}} V_{2} \tag{7}\\
& I_{2}=\frac{-Z_{21}}{\Delta_{z}} V_{1}+\frac{Z_{11}}{\Delta_{z}} V_{2} \tag{8}
\end{align*}
$$

The Y-parameters of a two-port network are given as

$$
\begin{align*}
& I_{11}=Y_{11} V_{1}+Y_{12} V_{2} \tag{10}\\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{align*}
$$

Comparing equation (7) with equation (9), we have $Y_{11}=\frac{Z_{22}}{\Delta_{Z}} ; Y_{12}=\frac{-Z_{12}}{\Delta_{Z}}$ and
Comparing equation (8) with equation (10), we have $Y_{21}=\frac{-Z_{21}}{\Delta_{Z}}$ and $Y_{22}=\frac{Z_{11}}{\Delta_{Z}}$
Q. 8 a. Consider the system given by system function $Z(s)=\frac{2(s+1)(s+3)}{(s+2)(s+6)}$. Design a RC network.

The given impedance function given by
$Z(s)=\frac{2(s+1)(s+3)}{(s+2)(s+6)}$
Design of R-C N/W :-
The partial fraction expansion of $\mathrm{Z}(\mathrm{s})$ will yield negative residues at poles $s=-2$ and $s=-6$.
Therefore, $Z(s)$ have to expand as $\frac{Z(s)}{s}$ and latter multiply by s.
Hence,

$$
\frac{Z(s)}{s}=\frac{a_{1}}{s}+\frac{a_{2}}{(s+2)}+\frac{a_{3}}{(s+6)}
$$

Where,

$$
\begin{aligned}
& a_{1}=\left.\frac{2(s+1)(s+3)}{(s+2)(s+6)}\right|_{s=0}=\frac{1}{2} \\
& a_{2}=\left.\frac{2(s+1)(s+3)}{s(s+6)}\right|_{s=-2}=\frac{1}{4} \quad \text { and } \\
& a_{3}=\left.\frac{2(s+1)(s+3)}{s(s+6)}\right|_{s=6}=\frac{5}{4}
\end{aligned}
$$

Therefore, $\frac{Z(s)}{s}=\frac{1}{2 s}+\frac{1}{4(s+2)}+\frac{5}{4(s+6)}$
Now, it is clear that none of the residues are negative.
Multiplying both the sides by s, we have

$$
\begin{aligned}
Z(s) & =\frac{1}{2}+\frac{s}{4(s+2)}+\frac{5 s}{4(s+6)} \\
& =\frac{1}{2}+\frac{1}{\frac{1}{1 / 4}+\frac{1}{5 / 3}}+\frac{1}{\frac{1}{5 / 4}+\frac{1}{55 / 24}}
\end{aligned}
$$

The resulting R-C network is shown in Fig.9.1.

b.Design a one-port RL network to realize the driving point admittance function $\mathbf{F}(\mathbf{s})=$ $\frac{3(s+2)(s+4)}{s(s+3)}$

$$
\begin{aligned}
& F(s)=\frac{3(s+2)(s+4)}{s(s+3)}=\frac{3\left(s^{2}+4 s+2 s+8\right)}{s^{2}+3 s} \\
& \text { Or } F(s)=\frac{3\left(s^{2}+6 s+8\right)}{s^{2}+3 s}=\frac{3 s^{2}+18 s+24}{s^{2}+3 s}
\end{aligned}
$$

Therefore, the driving point function $F(s)$ is realized by the continues fraction expansion i.e., (CAUER Form - I)

$$
\begin{gathered}
s^{2}+3 s{ }^{3 s^{2}+18 s+24} \begin{array}{c}
3 s^{2}+9 s \\
9 s+24 \\
\frac{s^{2}+\frac{8}{3} s}{s^{2}+3 s}\left(\frac{1}{9} s \leftarrow Y_{2}(s)=\frac{1}{3} \Omega\right. \\
\left.\frac{1}{3} s\right) \sqrt{9 s+24}(s)=\frac{1}{9} H \\
\frac{9 s}{24} \leftarrow Y_{3}(s)=\frac{1}{27} \Omega \\
\frac{1}{3} s\left(\frac{s}{72}\right.
\end{array} \leftarrow Z_{4}(s)=\frac{1}{72} H \\
\frac{\frac{1}{3} s}{x}
\end{gathered}
$$

The synthesised RL network

Q. 9 a. Synthesise the network that has a transfer impedance $\mathbf{Z}_{\mathbf{2 1}}(\mathbf{s})=\frac{2}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+4 \mathrm{~s}+2}$ and 1Ω termination at the output.

Ans:
Aiven that $Z_{21}(s)=\frac{2}{s^{3}+3 s^{2}+4 s+2}$

$$
Z_{21}(s)=\frac{P(s)}{Q(s)}=\frac{2}{s^{3}+3 s^{2}+4 s+2}
$$

Here, all three zeros of transmission at $s=\infty$. Since the numerator $\mathrm{P}(\mathrm{s})$ is a constant 2 \& $\left(3 s^{2}+2\right)$ with the odd part of the denominator i.e. $s^{3}+4 s$ as

$$
\begin{aligned}
& Z_{21}=\frac{2}{s^{3}+4 s} \\
& Z_{22}=\frac{3 s^{2}+2}{s^{3}+4 s}
\end{aligned}
$$

b.Show that the filter described by the transfer function $\mathbf{H}(\mathbf{s})=$ $\frac{1}{\left(s^{2}+0.73536 s+1\right)\left(s^{2}+1.84776 s+1\right)}$ is a low pass filter.

Therefore Z_{21} and Z_{22} have the same poles. Synthesize L_{22}, so network structure by the has the transmission zeros of Z_{21}. Synthesize Z_{22} to give LC following continued fraction expansion of $\frac{1}{Z_{22}}$.

$$
\begin{aligned}
& 3 z ^ { 2 } + 2 \longdiv { z ^ { 2 } + 4 s } (\frac { 1 } { 3 } s \leftarrow Y \\
& \frac{z^{2}+\frac{2}{3} s}{\frac{10}{3} s} \sqrt{\frac{5 z^{2}+2}{3 z^{2}}\left(\frac{9}{10} s \leftarrow Z\right.} \\
& 2) \frac{10}{3} s\left(\frac{5}{3} s \leftarrow Y\right. \\
& \frac{\frac{10}{3} s}{0}
\end{aligned}
$$

Since Z_{22} is synthesized from the $1-\Omega$ termination toward the input end, the final network takes the form shown in Fig.

b. Show that the filter described by the transfer function $\mathrm{H}(\mathrm{s})=$

$$
\begin{equation*}
\frac{1}{\left(S^{2}+0.73536 S+1\right)\left(S^{2}+1.84776 S+1\right)} \text { is a low pass filter. } \tag{6}
\end{equation*}
$$

Ans:
The given transfer function $\mathrm{H}(\mathrm{s})$ is

$$
H(s)=\frac{1}{\left(s^{2}+0.76536 s+1\right)\left(s^{2}+1.84776 s+1\right)}
$$

In low-pass filter design, all the zeros of the system function are at infinity. Therefore, in the given transfer function $\mathrm{H}(\mathrm{s})$, the zeros in the numerator are at infinity. Hence the given transfer function $\mathrm{H}(\mathrm{s})$ is a Low Pass filter.

Text books

1. Network Analysis, M.E.Van Valkenberg, Ord Edition, Prentice-Hall India, EEE 2006
2. Network Analysis and Synthesis, Franklin F Kuo, 2nd Edition, Wiley India Student Edition 2006
