Q. 2
a. If $\mathbf{x}(\mathbf{t})=\mathbf{u}(\mathbf{t})-\frac{1}{2}$;
(i) Sketch $\mathrm{x}(\mathrm{t})$
(ii) Determine analytically the signal is periodic or not if periodic, state the period

$$
\begin{equation*}
x(t)=u(t)-1 / 2 \tag{a}
\end{equation*}
$$

(i)

(ii) not Peridic

Hence, No period combe defined

b. Do as directed:
(i) Plot $x(n)$ and also plot $y[n]=$ $\mathrm{x}[\mathrm{n}+1]$ where $\mathrm{x}[\mathrm{n}]$ is defined as below:
$x[n]=\left\{\begin{array}{ccc}0 & \text { if } & n<2 \\ 2 n-4 & \text { if } & 2 \leq n \leq 4 \\ 4-n & \text { if } & 4 \leq n\end{array}\right.$
(ii) Determine convolution of $\mathbf{x}(\mathrm{t})=\mathbf{e}^{2 t} \mathbf{u}(-t)$ and $\mathbf{h}(\mathrm{t})=\mathbf{u}(\mathrm{t}-3)$ and plot resultant $\mathbf{y}(\mathrm{t})$
(iii) Let $h(n)$ be the impulse response of the LTI causal system described by the difference equation $y(n)=a y(n-1)+x(n)$ and let $h(n)^{*} h_{1}(n)=\delta(n)$. Find $h_{1}(n)$.
(b)

$y(n)=x(n+1)$ is shift

$$
\text { left by } 1
$$

(ii) convolution $x(t)=e^{2 t} u(t) \& \quad h(t) \neq u(t-3)$

$\therefore y(t)=\int_{-\infty}^{\infty} e^{2 \tau} d t=1 / 2$
C : For $t-3 \geqslant 0$, product $x(\tau) \cdot h(t-t)$

$$
\text { is nonzero for }-\infty<\tau<0 \text {) }
$$

(vii). $y(n)=a y(n-1)+x(n) \quad \& h(n)+h_{1}(n)=\delta(n)$.

$$
\begin{aligned}
& \therefore y(z)=a z^{-1} y(z)++^{x(z)} \quad H(z) H_{1}(z)=1 \\
& \therefore H(z)=\frac{Y(z)}{x(z)}=\frac{1}{1 \cdot a z^{-1}} \quad H_{1}(z)=\frac{1}{A(z)}
\end{aligned}
$$

$$
\therefore H(z)=1-a z^{-1} \quad: h_{1}(n) \approx \delta(n)-a \cdot \delta(n-1)
$$

Ans.
(C) Energy signal Power signal.

1) Which has finite energy
\& Zen avg. power.
2) if $x(t)$ is energy signal. $0<E<\infty$, and $P=0$.
(38)
Q. 3 a. Compute the Fourier series for the following signal shown in Fig.2.

Fig. 2
Q. 2
Q.) (a) foxier series

Hence

$$
T=4, \quad \text { so, } \omega_{0}=\frac{2 \pi}{T}=\frac{2 \pi}{4}=\pi / 2
$$

2
$\cos 1 / 4 \int_{0} x(t) d x=3 / 4$ —
$c_{n}=\frac{1}{4} \int_{0}^{2}(x)(t) e^{-j n \pi / 2} d t=\frac{1}{4} \int_{0}^{1} 2^{-j n \pi / 2 t} d t+\int_{1}^{2} e^{-j n \pi} 2 t$

This gives $C_{n}=\frac{1}{j n \pi}\left[1-(1 / 2)(-1)^{n}-1 / 2 e^{-j n n / 2}\right]\left(\because-e_{=-1)^{n}}^{-j n \pi}\right)$
$c_{0}=3 / 4$.
$\therefore x(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{-i n \frac{\pi}{2} t} \quad 1$
Tans.
b. Consider an LTI system with impulse response $h(n)=\alpha^{n} u(n),-1<\alpha<1$; and with the input $x(n)=$ $\cos (2 \pi n / N)$. Determine $\mathbf{y}(\mathrm{n})$.

$$
\begin{aligned}
& \text { Q:3 (b) } \quad x(n)=\cos (2 \pi / / / N) \quad \& h(n)=\alpha^{n} u(n) \text {. } \\
& \therefore x(n)=\frac{1}{2} e^{j(2 \pi / N) n}+1 / 2 e^{-j(2 \pi / N) n}+1 \\
& \text { Also, } \\
& H\left(e^{j \omega}\right)=\sum_{n=0}^{\infty} \alpha^{n} e^{-j \omega n} \\
& =\sum_{n=1}^{\infty}\left(\alpha e^{-j \omega}\right)^{n} \\
& \therefore H\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}} \\
& \text { Hence } y(n)=x(n), h(n) \\
& =\frac{1}{\sqrt{1+\alpha^{2}}} e^{-j\left(-\tan ^{-1} \alpha\right)} \\
& =\frac{1}{2} H\left(e^{j \frac{2 \pi}{N}}\right) \cdot e^{\left(\frac{j 2 \pi n}{N}\right)}+\frac{1}{2} H\left(e^{-j \frac{2 \pi n}{N}} e^{-j\left(\frac{2 \pi n}{N}\right)}\right. \\
& =\frac{1}{2}\left(\frac{1}{1-\alpha^{\bar{e}} i 2 \pi / N}\right) e^{j\left(\frac{2 \pi}{N}\right) n}+\frac{1}{2}\left(\frac{1}{1-\alpha e^{j} 2 \pi / N}\right) e^{-j\left(\frac{2 \pi}{N}\right) n} \\
& \text { using this. } \\
& y(n)=\frac{1}{\sqrt{1+\alpha^{2}}} \cdot \cos \left(\frac{\pi n}{2}-\tan ^{-1}(\alpha)\right) \cdots \text {..ns. }
\end{aligned}
$$

Q.4a. State and explain convergence conditions for continuous-time Fourier transform.

Q:4
(a) Topic
4.1.2. Test Book (I)
b. Consider a stable LTI system characterized by the differential equation:
$d y(t) / d t+5 y(t)=x(t)$. Determine the
(i) frequency response and
(ii) impulse response for the system.

c. State and prove following properties for continuous time Fourier transforms:
(i) Conjugation
(ii) Time shifting
(iii) Differentiation
(iv) Duality
(c)

$$
\begin{aligned}
& \text { Topic. } 4.3 \text { Text Brow (I) } \\
& 4.3 .3 ; 4.3 .2,4.3 .4 .4 .3-6 .
\end{aligned}
$$

Q. 5 a. Consider a stable Causal LTI system whose input $x(n)$ and output $y(n)$ are related through second order difference equation
$y(n)-(3 / 4) y(n-1)+(1 / 8) y(n-2)=2 x(n) \quad$; determine the response for the given input $x(n)=(1 / 4)^{n}$ $\mathbf{u (n)}$

$$
\begin{align*}
& \text { Q:5 (a) given } y(n)-\frac{3}{4} y(n-1)+1 / 8 y(n-2)=2 x(n) \\
& x(n)=(1 / 4)^{n} 4(n) \\
& y\left(e^{j \omega}\right)\left.=1+c e^{j \omega}\right) \cdot x\left(e^{j \omega}\right)=\left[\frac{2}{\left(1-1 / 2 e^{j \omega}\right)\left(1-1 / 4 e^{j \omega}\right)}\right]\left[\frac{1}{1-1 / 4 e^{-j \omega}}\right] \\
&=\frac{2}{\left(1-1 / 2 e^{j \omega}\right)\left(1-1 / 4 e^{-j \omega}\right)^{2}}
\end{align*}
$$

$$
\therefore y\left(e^{j \omega}\right)=\frac{B_{1}}{\left(1-1 / 4 e^{j \omega}\right)}+\frac{B_{2}}{\left(1-1 / 4 e^{j \omega}\right)^{2}}+\frac{B_{3}}{\left(1-1 / 2 e^{-j \omega}\right)}
$$

on solving

$$
B_{1}=-4, \quad B_{2}=-2, \quad B_{3}=8
$$

Substituting
a solving.
$y(n)=\left\{-4(1 / 4)^{n}-2(n+1)(1 / 4)^{n}+8(1 / 2)^{n}\right\} 4(n)$ \square
b. For signal $x(n)=\cos _{0} n$ with $w_{0}=2 \pi / 5$, obtain and plot $X\left(e^{j w}\right)$.

$$
\left.\begin{array}{l}
\text { (b) } \left.\cos \omega_{0 n}=x e n\right)=\frac{1}{2} e^{j \omega_{0} n}+\frac{1}{2} e^{-j \omega_{0 n}} \omega_{i t h} \omega_{0}=2 \pi / 5 \\
\therefore \times\left(e^{j \omega}\right)=\sum_{l=-\infty}^{\infty} \pi \delta\left(\omega-\frac{2 \pi}{5}-2 \pi l\right)+\sum_{l=-\infty}^{\infty} \pi \delta\left(\omega+\frac{2 \pi}{5}-2 \pi l\right) \\
\times\left(e^{j \omega}\right)=\pi \delta\left(\omega-\frac{2 \pi}{5}\right)+\pi \delta(\omega+2 \pi / 5) ;-\pi<\omega<\pi \tag{1}
\end{array}\right\}
$$

c. State and prove following properties for discrete time Fourier transforms:
(i) Time shifting
(ii) Frequency shifting
(C)
Topic. 5.3.3 TextBook. (I)

$$
-\frac{6}{8}
$$

Q. 6 a. Explain the concept of :
(i) Non-linear phase
(ii) Group delay
(iii) Continuous-time ideal low pass filter
(iv) First order continuous time system

2:6 (a) Topic 6.2. TextBook (I)
b. Define sampling, aliasing and Nyquist interval. For the following signal $\mathbf{x}(\mathbf{t})$, calculate Nyquist rate.
$x(t)=6 \cos 50 \pi t+20 \sin 300 \pi t-10 \cos 100 \pi t$.

Sampling:- The process of converting an analog signal into a discrete signal or making an analog (conthuous) signal to occur at a particular interval of time is known as sampling.

Aliasing:- When a continuous
When a continuous lower than Nyauist rate sampled at a rate
$f_{s}<2 \mathrm{fm}$, then successive cycles of the spectrum ts $<2 \mathrm{fm}$, then successive
of sampled signal $g(t)$ overlap with each other is called aliasing. band limited signal is

Nyquist Interval:- Max. sampling interval is called My. W.

$$
T_{s}=\frac{1}{2 f \mathrm{fm}} \mathrm{sec} .
$$

$x(t)=6 \cos 50 \pi t+20 \sin 300 \pi t-10 \cos 100 \pi t$.

$$
f_{1}=\frac{\omega_{1}}{2 \pi}=\frac{50 \pi}{2 \pi}=25 \mathrm{~Hz}
$$

$f_{2}=\frac{12}{2 \pi}=\frac{300}{2 \pi}=1501+2$
$f_{3}=\frac{\omega_{3}}{2 \pi}=\frac{100}{2 \pi}=50 \mathrm{~Hz}$. F The given message
\therefore Highest freq. component
Signal will be $f_{\text {max }}=150 \mathrm{~Hz}$.
\therefore Nyauist rate $=2$ fax $^{2} 300 \mathrm{~Hz}$ Aus.
Q.7a. Discuss the all-pass system using Laplace transform with necessary diagrams.

$$
\therefore \text { Nyam>1 }
$$

$\therefore 7 \quad 0$
(a) All pars-systew: Topic. 9.4.3 Text book (I).
b. Obtain the Laplace transform of:
(i) $\mathbf{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \mathbf{u}(\mathrm{t})$
(ii) $\mathbf{x}(\mathrm{t})=-\mathbf{e}^{-\mathrm{at}} \mathbf{u}(-t)$

$$
\begin{align*}
& \text { (b) (i) } x(t)=e^{-a t} u(t) \text {. } \\
& x(s)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{s t} d t \\
& =\int_{0}^{\infty} e^{-a t} e^{s t} d t \\
& \text { with } s=6+j \omega \text {. } \\
& x(\sigma+j \omega)=\delta_{0}^{\infty} e^{-(b+a) t} e^{-j \omega t} d t . \\
& i=\frac{1}{(6+a)+j \omega} \quad b+a>0 \\
& =\int_{0}^{\infty} e^{(-s+a)} t d t \text {. } \\
& \Rightarrow \quad x(s)=\frac{1}{s+a} \quad \operatorname{Re}\{s\}>-a . \\
& \therefore \quad e^{a t} u(t) \stackrel{\alpha}{\longleftrightarrow} \frac{1}{s+a} \text { Re }\{s\}>-a . \\
& \text { (ii) } x(t)=-e^{-a t} u(-t) \text {. } \\
& \therefore x(s)=\int_{-\infty}^{\infty} e^{-a t} e^{-s t} u(-t)+t \\
& =-\int_{0}^{\infty} e^{-(s+a) t} d t . \\
& \begin{array}{r}
x(s)=\frac{1}{s+a} \text { for convergence } \\
\quad \operatorname{Re}\{s+a\}<0 .
\end{array} \tag{1}\\
& \cdots \operatorname{Re}\{s\}<-a \text {. } \\
& e^{-a t} u(t): \stackrel{\alpha}{s+a} \quad \operatorname{Re}\{s\}<-9 \text {. }
\end{align*}
$$

c. State initial value and final value theorems for Laplace Transform. Also state its usefulness.

Q. 8 a. Let the \mathbf{z} - transform of $\mathrm{x}(\mathrm{n})$ be $\mathrm{X}(\mathrm{z})$. Show that the \mathbf{z}-transform of $\mathrm{x}(-\mathrm{n})$ is $\mathrm{X}(1 / \mathrm{z})$

Q:8(a)

$$
x(n) \longleftrightarrow x \nLeftarrow(z)
$$

Let
$y(k)=x(-n)$.
$\therefore y(n)=\sum_{n=-\infty}^{\infty} x(-n) z^{-n}=\sum_{\gamma=-\infty}^{\infty} x(\gamma) z^{+\gamma}$

$\gamma=-\infty$
$=\sum_{\gamma=-\infty}^{\infty} x(\gamma) \cdot\left(2^{-1}\right)^{-1}=x\left(z^{-1}\right)=x(1 / z)$.
b. Determine the region of convergence of the z-transform of the signal
$\mathbf{x}(\mathbf{n})=2^{\mathrm{n}} \mathbf{u}(\mathbf{n})-3^{\mathrm{n}} \mathbf{u}(-\mathbf{n}-$ 1)
(b) $\quad x(n)=2^{n} u(n)-3^{n} 4(-n-1)$

$$
z^{n} u(n) \Leftrightarrow \frac{1}{1-2 z^{-1}} ;|z|>2
$$

$$
3^{n}\left(+4(-n-1) \leftrightarrow \frac{1}{1.3 z^{-1}} \quad, \quad|z|<3\right.
$$

c. Find Inverse Z-Transform of following:
(i) $\mathbf{X}(\mathrm{z})=\mathbf{1} /\left(1-\mathrm{az}^{-1}\right),|\mathrm{z}|>|\mathrm{a}|$
(ii) $\mathrm{X}(\mathrm{z})=\log \left(1+\mathrm{az}^{-1}\right),|\mathrm{z}|>|a|$
(C)
(Ci)
$x(z)=\frac{1}{\operatorname{l-az}^{-1}} \quad|z|>|a|$.
(ii) $x(z)=\log \left(1+a z^{-1}\right) \quad|z|>\mid a$

Power series by long elivision.

$$
a z^{-1}-a z^{2}
$$

$$
a^{2} z^{2}
$$

$$
\because
$$

$$
\frac{1}{F a z} z^{-1}=1+a z^{-1}+a^{2} z^{-2}
$$

$$
\begin{aligned}
& 1 - a z ^ { \prime } \longdiv { 1 } \\
& 1-a z^{\prime} \\
& 1+a z^{-1}+a z^{2} z^{-2}+\cdots(2)=\sum_{n=1}^{\infty} \frac{(-1)^{n} a^{n} z^{-n}}{n} \\
& \text { - } \\
& a z^{-1} \\
& \therefore x(n)=\left\{\begin{array}{l}
(-1)^{n+1} \frac{a^{n}}{n} \quad n \geq 1 \\
0 \quad n \leq 0 .
\end{array}\right.
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\text { R.x. } & v=b+x
\end{aligned} \quad \begin{aligned}
6 & =\text { const } \\
x & =\text { Gauss }
\end{aligned}
$$

By writing
Gaussion dist n for for .
$f_{x}(x)=\frac{1}{\sqrt{2 \pi} b^{2}} e^{-(x-m)^{2} / 2 \sigma^{2}} \quad 6 v^{2}=\int_{-\infty}^{\infty} 2 \sigma^{2} p^{2} \cdot \frac{1}{6 \sqrt{2 \pi}} e^{-p^{2}} 6 \sqrt{2} d p$
lese $m=0$.

$$
=\frac{26^{2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p
$$

$f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-x^{2} / 26^{2}}+$ (B).

$$
\begin{equation*}
6 v^{2}=\frac{4 t^{2}}{\sqrt{\pi}} \int_{0}^{\infty} p^{2} e^{-p^{2}} d p \tag{2}
\end{equation*}
$$

Fiven $V=b+X \Rightarrow x=v-b$. $6 v^{2}=\frac{4 b^{2}}{\sqrt{\pi}} \int_{0}^{\infty} p^{2} e^{-p^{2}} d p$ (2) $f_{v}(v)=\frac{1}{2 \pi b^{2}} e^{-(v-b)^{2} / 2 \sigma^{2}}+(c)$ compary with standald By compaing (A) U (CC),

$$
\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{(2 n-1)}{2^{n+1} a^{n}} \sqrt{\pi / a} .
$$

$$
V-b=x-m \quad, \quad \text { mean }=b
$$

$$
\text { To find varialiee } 6^{2}
$$

$$
\begin{equation*}
\sigma_{v}^{2}=\int_{-\infty}^{\infty}(v-b)^{2}-f_{v}(v) d v \tag{2}
\end{equation*}
$$

$$
\cdots 6 v^{2}=\frac{46^{2}}{\sqrt{\pi}} \times \frac{1}{2^{+1}} \cdot \frac{\sqrt{\pi}}{1}
$$

$$
=\int_{-\infty}^{\infty}(v-b)^{2} \frac{1}{6 \sqrt{2 \pi}} e^{-} \frac{(v b)^{2}}{2 b^{2}} \cdot d v
$$

$$
=\frac{46^{2}}{\sqrt{\pi}} \times 1 / 4 \times \sqrt{\pi}
$$

$$
\begin{equation*}
6 v^{2}=6^{2} \tag{2}
\end{equation*}
$$

Let $\frac{v-b}{\sigma \sqrt{2 \theta}}=P \Rightarrow d v=6 \sqrt{2} d P . \quad 6 v^{2}=6^{2}$. Ams

$$
\begin{array}{cl}
v \rightarrow-\infty & p \rightarrow-\infty \\
v \rightarrow+\infty & p \rightarrow+\infty \tag{1}\\
(v b)^{2}=2 p^{2} \sigma^{2}
\end{array}
$$

Textbooks

1.Signals and Systems, A.V. Oppenheim and A.S. Willsky with S. H. Nawab, Second Edition, PHI Private limited, 2006
2. Communication Systems, Simon Haykin, 4th Edition, Wiley Student Edition, 7th Reprint 2007

