Q.2a. Show that the function $\mathrm{f}(\mathrm{z})=\sqrt{|\mathrm{xy}|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied thereof.
Q.2.a. Som: if $f(z)=\sqrt{p y \mid}=u(x, y)+i v(x, y)$, then

$$
u(x, y)=\sqrt{|x y|}, v(x, y)=0
$$

Atthe origin, we have,

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\operatorname{Lf}_{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x}=\operatorname{Lt}_{x \rightarrow 0} \frac{0-0}{x}=0 \tag{1}\\
& \frac{\partial u}{\partial y}=\operatorname{Lt}_{y \rightarrow 0} \frac{u(0, y)-u(0,0)}{y}=\operatorname{Lt}_{x \rightarrow 0} \frac{0-0}{y}=0 \tag{1}\\
& \frac{\partial v}{\partial x}=L_{x \rightarrow 0} \frac{v(x, 0)-v(0,0)}{x}=L_{x \rightarrow 0} \frac{0-0}{x}=0 \\
& \frac{\partial v}{\partial y}=L_{y \rightarrow 0} \frac{v(0, y)-v(0,0)}{y}=L t \frac{0-0}{y}=0
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial u}{\partial x} \tag{1}
\end{equation*}
$$

ie. C.R.equations are satisfied at the origin. However

$$
\begin{aligned}
& \text { Lions are satisfied } \\
& \begin{aligned}
f^{\prime}(0) & =\operatorname{Lf}_{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}+\operatorname{lt}_{z \rightarrow 0} \frac{\sqrt{|x y|}-0}{x+i y} \\
& =L_{x \rightarrow 0} \frac{\sqrt{\left|m x^{2}\right|}-0}{x(1+i m)},
\end{aligned} \quad \text { when } z \rightarrow 0 \text { along the } \\
& \text { line } y=m x
\end{aligned}
$$

$=\frac{\sqrt{ }|m|}{1+i m}$ Which is not unique.
$\therefore f^{\prime}(0)$ does not exist. Hence $f(z)$ in not analytic at the origin.
b. Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i$ and $z_{3}=-2$ into the points $w_{1}=1, w_{2}=i$ and $w_{3}=-1$.
Q. $2 \cdot b \cdot$ som

We have the transformation is $\omega=\frac{a z+b}{c z+d}$ -

$\left.\begin{array}{c|c|}\hline z & w \\ \hline 2 & 1 \\ -2 & i \\ \hline\end{array}\right]$ (1)
Additing (II) and (V) $2 a=d$ (V)

$$
\begin{aligned}
& \text { Now (IV)-(II), } \quad b=2 c \\
& \text { from(III), } \quad \text { ai }=3 c \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } \quad 2 a=d, \quad b=2 c, \quad a x^{\prime}=3 c \\
& \Rightarrow a_{a}=\frac{d}{2}=\frac{3 c}{i}=-\frac{3 b}{2 i} \\
& \text { (3) } \\
& \Rightarrow \\
& \frac{a}{1}=\frac{d}{2}=\frac{c}{i / 3}=\frac{b}{2 i / 3} \\
& \therefore W=\frac{32+21}{12+6} \pi \text { Ans. }
\end{aligned}
$$

Q.3a. Find the Taylor's series expansion of a function of the complex variable $f(z)=\frac{1}{(z-1)(z-3)}$ about the point, $z=4$. Find its region of convergence.
Q. $3 . a$. som.
we have, $f(z)=\frac{1}{(z-1)(z-3)}$

$$
\begin{aligned}
& \therefore \quad f(4)=\frac{1}{3} \\
& f(z)=\frac{1}{2}\left[\frac{1}{z-3}-\frac{1}{z-1}\right] \\
& \therefore f^{\prime}(z)=\frac{1}{2}\left[-\frac{1}{(z-3)^{2}}+\frac{1}{(z-1)^{2}}\right] \\
& \text { Putting } z=4, \quad f^{\prime}(4)=-\frac{4}{9} \\
& f^{\prime \prime}(z)=\frac{1}{2}\left[\frac{-2}{(z-3)^{2}}-\frac{1}{(z-1)^{2}}\right] \\
& \text { Putting } z=4, \quad f^{\prime \prime}(4)=\frac{26}{27}
\end{aligned}
$$

Similarly, $\quad f^{\prime \prime}(4)=-\frac{80}{27}$
We have Taylor's series is, $\quad f(z)=f(a)+(z-a) f^{\prime}(a)+\frac{(z-a)^{2}}{12} f^{\prime \prime}(a)+\cdots(1)$

$$
\begin{aligned}
f(z)=f(a)+(z-a) f\left(-\frac{1}{(z-1)(z-3)}\right. & =\frac{1}{3}+(z-4)\left(-\frac{4}{9}\right)+\frac{(z-4)^{2}}{L^{2}}\left(\frac{26}{27}\right)+\frac{(z-4)^{3}}{13}\left(-\frac{80}{22}\right) . \\
& =\frac{1}{3}-\frac{4}{9}(z-4)+(z-4)^{2} \frac{13}{27}-(z-4)^{3} \frac{40}{81}+\cdots
\end{aligned}
$$

Alter

Sole. to Q.36a)

$$
\begin{align*}
f(3) & =\frac{1}{(2-1)(3-3)} \\
& =\frac{1}{2}\left[\frac{(3-1)-(3-3)}{(3-1)(2-3)}\right] \\
f(3) & =\frac{1}{2}\left[\frac{1}{3-3}-\frac{1}{3-1}\right] \tag{2}
\end{align*}
$$

For expansion about $z=4$, put $z-4=4$ $z_{3}=4+4$
$\Rightarrow f(x)=\frac{1}{2}\left[\frac{1}{u+1}-\frac{1}{u+3}\right]$

$$
\begin{align*}
& =\frac{1}{2}\left[\frac{1}{(1+4)}-\frac{1}{3\left(1+\frac{4}{3}\right)}\right] \\
& =\frac{1}{2}\left[(1+4)^{-1}-\frac{1}{3}\left(1+\frac{4}{3}\right)^{-1}\right] \tag{1}
\end{align*}
$$

$$
=\frac{1}{2}\left[\sum_{n=0}^{\infty}(-1)^{n} u^{n}-\frac{1}{3} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{4}{3}\right)^{n}\right]
$$

Region of convergence:

$$
\left.=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}(2)^{2-4}\right)^{n}-\frac{1}{6} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{3-4}{3}\right)^{n}
$$

largest circle having centre at $3=4$ and radio enclosing $n=$ singularity $\Rightarrow f(3)$ is,$|2-4|=1$

$$
\therefore \text { Region } 7 \text { convergence is }|3-4|<1
$$

b. Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and find residue of $f(z)$ of at each pole.

$$
Q \cdot 3 \cdot b \cdot \text { som }
$$

We have, $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$
For the pole putting the denominator $=0$

$$
\therefore \quad(z-1)^{2} \oplus(z+2)=0 \Leftrightarrow z=1,1,-2
$$

Here $z=1$ is a pole of order 2 and $z=-2$ is a sin p p. apt Now residue at $z=-2, z^{2}$

$$
\begin{equation*}
\operatorname{Lt~residue~at~}_{z \rightarrow-2}[(z+2) f(z)]=\operatorname{Lt}_{z \rightarrow 2} \frac{z}{(z-1)^{2}}(1)=\frac{4}{9} \tag{1}
\end{equation*}
$$

and residue at $z=1$,

Q3.b. Som: Remaining post.

$$
\text { b. Som: Remaining part. } \operatorname{Li}_{z \rightarrow 1} \frac{d}{d z}\left[\frac{z^{2}}{z+2}\right]=\operatorname{Lt}_{z \rightarrow 1}\left[\frac{(z+2) \cdot 2 z-z^{2}}{(z+2)^{2}}\right]
$$

Q.4a. Evaluate grad $e^{r^{2}}$ where $r^{2}=x^{2}+y^{2}+z^{2}$.
Q.4.a. Som:
we have grad

$$
\begin{aligned}
e^{\gamma^{2}} & =\nabla e^{\gamma^{2}} \\
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot e^{\gamma^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{i} \frac{\partial}{\partial x}\left(e^{r^{2}}+\hat{j} \frac{\partial}{\partial y}\left(e^{r^{2}}\right)+\hat{k} \frac{\partial}{\partial z}\left(e^{r^{2}}\right)\right. \\
& =\hat{i}\left(e^{r^{2}}\right) 2 r \frac{\partial r}{\partial x}+\hat{j}\left(e^{r^{2}}\right) 2 r \frac{\partial r}{\partial y}+\hat{k}\left(e^{r^{2}}\right) 2 r \frac{\partial r}{\partial z} \\
& =\hat{\lambda}+i r+k^{\hat{2}} \frac{\partial r}{\partial r}
\end{aligned}
$$

$$
\begin{equation*}
=2 r e^{r^{2}}\left(i \frac{1}{i} \frac{\partial r}{\partial x}+\hat{j} \frac{\partial r}{\partial y}+k^{\hat{2}} \frac{\partial r}{\partial z}\right) \tag{i}
\end{equation*}
$$

But we have $r^{2}=x^{2}+y^{2}+z^{2}$

$$
\begin{align*}
& \text { nt we have } r^{2}=x^{2}+y^{2}+z^{2} \tag{2}\\
& \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}, \frac{\partial r}{\partial y}=\frac{\partial r}{r} \text { and } \frac{z}{\partial z}=\frac{z}{r} .
\end{align*}
$$

Prating in (i), we get
b. Prove that $\operatorname{div}\left\{\frac{f(r) \cdot \vec{r}}{r}\right\}=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} f\right)$
\& $4 \cdot b$ som: we have,

$$
\begin{align*}
& \text { b. Som: We have, } \\
& \text { div }\left\{\frac{f(r) r}{r}\right\}=\operatorname{div}\left\{\frac{f(r) r}{r}(x i+y j+z k)\right. \tag{i}\\
&=\frac{\partial}{\partial x}\left\{\frac{f(r)}{r} x\right\}+\frac{\partial}{\partial y}\left\{\frac{f(r)}{r} y\right\}+\frac{\partial}{\partial z}\left\{\frac{f(r)}{f}-z\right\} \\
& \text { Now, } \frac{\partial}{\partial x}\left\{\frac{f(r)}{r} x\right\}=\frac{f(r)}{r}+x \frac{d}{d r}\left\{\frac{f(r)}{r}\right\} \frac{\partial r}{\partial x} \\
&=\frac{f(r)}{r}+x\left\{\frac{f^{\prime}(r)}{r}-\frac{1}{r^{2}} f(r)\right\} \frac{x}{r} \tag{1}\\
&=\frac{f(r)}{r}+\frac{x^{2}}{r^{2}} f^{\prime}(r)-\frac{x^{2}}{r^{3}} f(r) . \tag{1}
\end{align*}
$$ Putting these values in (1) we get

$$
\operatorname{div}\left\{\frac{f(r) r}{r}\right\}=\frac{3}{r} f(r)+\frac{r^{2}}{r^{2}} f^{\prime}(r)-\frac{r^{2}}{r^{3}} f(r) \text {, } \quad \text {, too. }
$$

$$
\begin{aligned}
& =\frac{2}{r} f(r)+f^{\prime}(r)=\frac{1}{r^{2}}\left[2 r f(r)+r^{2} f^{\prime}(r)\right] \\
& =\frac{1}{r^{2}} \frac{d}{d r}\left[r^{2} f(r)\right] \oplus \text { Ans }
\end{aligned}
$$

Q. 5 a. Apply Green's theorem to evaluate $\oint_{C} 2 y^{2} d x+3 x d y$

Where \mathbf{C} is the boundary of closed region bounded between $\mathbf{y}=\mathbf{x}$ and $y=x^{2}$
Q.5.a. Son: stevens facers thorn
(1)

By Crees's Theorem.

$$
\begin{aligned}
\oint_{c} 2 y^{2} d x+3 x d y & =\iint_{S}(3-4 y) d x \cdot d y \\
& =\int_{0}^{1} \int_{y=x^{2}}^{y}(3-4 y) d y \cdot d x \text { (1) Fr r fimitit } 4 y \\
& =\int_{0}^{1}\left(3 y-2 y^{2}\right)^{x^{2}} d x \\
& =-\int_{0}^{1}\left[3 x^{2}-2 x^{4}+2 x^{2}-3 x\right] d x \\
& =-\int_{0}^{1}\left[5 x^{2}-2 x^{4}-3 x\right] d x \\
& =-\frac{5}{2}+\frac{2}{5}+\frac{3}{2}=-\frac{50-12-45}{30}=+\frac{7}{30} \text { Ans }
\end{aligned}
$$

b. Apply Stoke's theorem to calculate $\oint_{C} 4 y d x+2 z d y+6 y d z$
where \mathbf{C} is the curve of intersection of $x^{2}+y^{2}+z^{2}=6 z$ and $z=x+3$
b. Som:

$$
\oint_{c} F \cdot d \bar{r}=\oint_{c}(4 y \hat{i}+2 z \hat{j}+6 y \hat{k}) \cdot(\hat{i} d x+\hat{j} d y+\hat{k} \cdot d z) D
$$

using stokels theorem.

$$
\oint_{C} \bar{F} \cdot d \bar{r}=\iint_{S} \nabla \times\left(4 y \hat{i}+2 z \hat{j}+6 y^{\prime} \hat{k}\right) \cdot \bar{n} d s
$$

Where S is the region bounded by $C .97$ will be on the plane $x-z=-3$. The unit normal \bar{n} to the surface

$$
\text { sis, } \begin{align*}
&=\frac{t i-k}{\sqrt{2}}(1) \\
&=\left|\begin{array}{lll}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
4 y & 2 z & 6 y
\end{array}\right|=(6-2) i+4 k-4 k(1) \\
& \therefore \quad \iint_{s} \nabla \times F \cdot \bar{h} d s=\iint_{s} 4(i-k) \cdot(i-k) \cdot \frac{8}{\sqrt{2}} \iint_{s} d s(1) \tag{1}
\end{align*}
$$

Since $x^{2}+y^{2}+(z-3)^{2}=9$, equation of sphere
$z=x+3$ equation of plane.
Intersection will be thu circle, with centre $(0,0,3)$ and rachins3

$$
\therefore \quad \iint_{s} d s=9 \pi \text { (2) }
$$

Q.6a. Using Langrange's interpolation formula, find the value of y corresponding to x $=10$ from the following table:

x	5	6	9	11
y	12	13	14	16

Q.6.9. Sori Langrange's interpolation formula
$f(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} f\left(x_{2}\right)$
$+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} f\left(x_{3}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)} f\left(x_{4}\right)$
Hence $x=10$
$x_{1}=5, x_{2}=6, x_{3}=9, \quad x_{4}=11$
$f\left(x_{1}\right)=12, f\left(x_{2}\right)=13, f\left(x_{3}\right)=14, f\left(x_{4}\right)=16$
$f(10)=\frac{(10-6)(10-9)(10-11)}{5-6)(5-9)(5-1)} \times 12+\frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11} \times 13$

$$
\begin{aligned}
f(10)= & \frac{(10-6)(10)(5-9)(5-11)}{(5-6)(6-5)(6-9)(6-1)} \\
& +\frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)} \times 14+\frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)} \times 16 \\
= & \frac{4 \times 1 \times-1}{-1 \times-4 \times-6} \times 12+\frac{5 \times 1 \times-1}{1 \times-3 \times-5} \times 13+\frac{5 \times 4 \times-1}{4 \times 3 \times-2} \times 14 \\
& +\frac{5 \times 4 \times 1}{6 \times 5 \times 2} \times 16 \\
= & 2-\frac{13}{3}+\frac{35}{3}+\frac{16}{3}=14 \frac{2}{3} \text { Ans. }
\end{aligned}
$$

b. Approximate the integral, $I=\int_{0}^{1} e^{x} d x$ using Simpson's ${ }^{1 / 3}{ }^{\text {rd }}$ Rule with $\mathbf{n}=8$ interval. Round off the result at 4 digits.
Q.6.b. Som: In the case of Simpson's Kite, tor rime, there are $n+1$ points which must be evalnatedstanting at $x=0$ and increasing by h until $x=1$.

$$
h=\frac{b-a}{n}=\frac{1}{8}=0.1251 \quad \begin{aligned}
& a=0 \\
& b=1
\end{aligned}
$$

The data table is formed:

$$
\begin{aligned}
& \text { Simpsons hulk now gives, } \\
& \begin{aligned}
\int_{a}^{b} f(x) d x & =\frac{1.155}{3}\left[\begin{array}{l}
1+4(133+1.455+1.868+2.399) \\
+2(1.284+1.649+2.117)+2.718]
\end{array}\right. \\
& =1.718(2)
\end{aligned}
\end{aligned}
$$

Q.7a. Apply Charpit method to solve the equation $p x+q y=p q$
Q.7.a. Som: $f(x, y, z, p, q)=0$ is $p x+q y-p q=0$

$$
\begin{equation*}
\frac{\partial f}{\partial x}=p, \frac{\partial f}{\partial y}=q, \quad \frac{\partial f}{\partial z}=0, \frac{\partial f}{\partial p}=x-q, \frac{\partial f}{\partial q}=y-p \tag{1}
\end{equation*}
$$

champits equations are, ∂_{z}^{d} dp $d q$ d $=\frac{d \phi}{d p}$

$$
\begin{aligned}
& \text { aRmpits equations are, } p^{d z}=\frac{d p}{-\frac{d x}{\partial q}}=\frac{d q}{-p \frac{\partial f}{\partial p}-q \frac{\partial f}{\partial q}}=\frac{d f}{\partial f}+p \frac{\partial f}{\partial z}=\frac{d \phi}{\frac{\partial f}{\partial y}+2 \frac{\partial f}{\partial z}}=\frac{d p}{0} \\
& \frac{d x}{-(x-q)}=\frac{d y}{-(y-p)}=\frac{d z}{-p(x-q)-q(y-p)}=\frac{d p}{p}=\frac{d q}{q}=\frac{d \phi f}{0}
\end{aligned}
$$

we have to choose the simplest integral involving p and q. or $\frac{d p}{p}=\frac{d q}{q}$ or $\log p=\log q+\log a \Rightarrow p=a q$ Putting for p in the given equation (1), we get

$$
q(a x+y)=a q^{2}, \quad \therefore q=\frac{y+a x}{a}(1)
$$

$\therefore \quad p=a q=y+a x$
Now $d z=p d x+q d y$
Putting for pond q in (III), we get

$$
d z=(y+a x) d x+\frac{y+a x}{a} d y
$$

$$
d z=(y+a x) d x+a \quad a x
$$

$a d z=(y+a x)(a d x+d y)$
Integrating $a z=\frac{(y+a x)^{2}}{2}+b$ (1) Ans.
b. Using the method of separation of variable, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $u(x, 0)=6 e^{-3 x}$

$$
\begin{equation*}
\text { b. sori } \quad \frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u \tag{1}
\end{equation*}
$$

Let $u=x(x)-T(t)$ (ii) Where x is afunction of x only and T is a function of t only.
Putting the value of u in (1), we get

$$
\frac{\partial(X \cdot T)}{\partial x}=2 \frac{\partial}{\partial t}(X \cdot T)+X \cdot T
$$

$$
T \cdot \frac{d x}{d x}=2 \times \frac{d T}{d t}+X \cdot T
$$

$$
\begin{aligned}
& T \cdot \frac{d x}{d x}=2 x \frac{x^{\prime}}{d t}=2 \frac{T^{\prime}}{T}+1=C(\operatorname{san}) \\
& \text { or } \left.T \cdot x^{\prime}=2 x \cdot T^{\prime}+X \cdot T \text { or } \not X \frac{x^{\prime}}{x}=2 \text { inn }\right)
\end{aligned}
$$

(a) $\frac{x^{\prime}}{x}=c$ or $\frac{1}{x} \frac{d x}{d x}=c$ or $\frac{d x}{x}=c d x$
\because on integrating $\log x=c x+\log a$
or $\log \frac{x}{a}=c x$ or $\frac{x}{a}=e^{c x}$ or $x=a e^{c x}$
(b) $\quad \frac{2 T^{\prime}}{T}+1=c$

$$
\text { or } \quad \frac{2 T}{T}+1=c \quad T^{\prime}=\frac{1}{2}(c-1) \text { or } \frac{1}{T} \frac{d T}{d t}=\frac{1}{2}(c-1) \text { or } \frac{d T}{T}=\frac{1}{2}(c-1) d t
$$

$$
\text { on integrating, } \log T=\frac{1}{2}(c-1) t+\log b
$$

$$
\text { or } \log \frac{T}{b}=\frac{1}{2}(c-1) t
$$

$$
\text { or } \frac{T}{b}=e^{\frac{1}{2}(c-1) t}
$$

or $T=b e^{\frac{1}{2}(c-1) t}(1)$
Anting the value of x and T in (11), we get
$\mu=a e^{c x} \cdot b e^{\frac{1}{2}(c-1) t}$
or $u=a b e^{c}$
or $u(x, 0)=a b e^{c x} \cdot 3 x$
ie $a b e^{c x}=6 e^{-3 x}$ or $a b=6$ and $c=-3$ (I) Putting the value of $a b$ and c in (II1), we get

$$
\begin{aligned}
& u=6 e^{-3 x+\frac{1}{2}(-3-1) t} \\
& u=6 e^{-3 x-2 t} \text { which in the regod-sotm. Ans }
\end{aligned}
$$

Q. 8 a. An urn ' A ' contains 2 white nd 4 black balls. Another urn ' B ' contains 5 white and 7 black balls. A ball is transferred from the urn ' A ' to the urn ' B ', then a ball is drawn from urn ' B '. Find the probability that it is white.
2.8G. som:
urn A contains 2 white and 4 black bulls. Uru B contains 5 white and 7 black balls.
Now there are two cases of transferring a ball from A to B.
core- I when a white ball is transferred from A to B.
Probability (Transfer of a white ball) $=\frac{2}{2+4}=\frac{1}{3}$
After transfer of a while ball, urn B contains 6 white balls and 7 black balls.

Potability (Drawing a white ball from urn B after transfer) $=P$ (transfer of a white ball)

$$
\begin{aligned}
& =P \text { (Transfer of a while ball) } \\
& =P\left(\frac{1}{3}\right)\left(\frac{6}{6+7}\right)=\frac{1}{3} \times \frac{6}{13}=\frac{2}{13}
\end{aligned}
$$

Cose-I. when a black ball is transferred from A to B.
$P($ Transfer of a black ball $)=\frac{4}{2+4}=\frac{2}{3}$
After transfer of a black ball, urn B contain 5 white and 8 black balls.

$$
\begin{aligned}
& \text { black balls. } \\
& P \text { (Drawing of a white ball from urn } B \text { after } \\
& \text { transfer) }
\end{aligned}
$$

$=P($ transfer of black ball $) \times P$ (Drawing of a white ball).

$$
\begin{equation*}
=\frac{2}{3}\left(\frac{5}{5+8}\right)=\frac{10}{39} \tag{1}
\end{equation*}
$$

\therefore Required Probability $=\frac{2}{13}+\frac{10}{39}=\frac{16}{39}$ (2) Ans.
b. Assuming half the population of a town consumes chocolates and that 100 investigators each take 10 individuals to see whether they are consumers, how many investigators would you expect to report that three people or less were consumers?

Q.8.b. Som:

The chance for an individual to be consumer

$$
\text { is } P=\frac{1}{2}
$$

The chance of not being a consumer $=q=1-\frac{1}{2}=\frac{1}{2}$ Here, we have to find the probabibility of $0,1,2$ and 3 successes.

$$
\begin{aligned}
p(r \leq 3) & =P(0)+p(1)+p(3) \\
& =q^{0}+{ }^{10} c_{1} q^{9} p^{1}+{ }^{10} c_{2} q^{8} p^{2}+{ }^{10} c_{3} q^{7} p^{3} \\
& \left.=\left(\frac{1}{2}\right)^{10}+10\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)+45\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2}+120\left(\frac{1}{2}\right)^{7} / \frac{1}{2}\right)^{3} \\
& =\left(\frac{1}{2}\right)^{10}[1+10+45+120]=\frac{176}{1024}
\end{aligned}
$$

The number of investigators to report that three or less people were consumers of chocolates is given by

$$
\frac{176}{1024} \times 100=17.2
$$

Hence, 17 investigators would
report that 3 or less people are consumers.
Ans
Q. 9 a. If the variance of the Poisson distribution is 2, find the probabilities for $r=1,2,3,4$ from the recurrence relation of the Poisson distribution. Also find $P(r \geq 4)$.

Q.9.9. Som

$$
\begin{aligned}
& \text { Variance }=m=2 ; \text { Mean }=2 \\
& P(r+1)=\frac{m}{r+1} P(r) \text { (1) [Recurrence relation] } \\
& \text { How, } \quad P(r+1)=\frac{2^{r+1}}{r+1} P(r)\left[P(r)=\frac{e^{-m} \cdot m^{r}}{2 r}\right. \\
& P(0)=e^{-m}=e^{-2}=0.1353 \\
& \text { If } r=0, P(1)=\frac{2}{0+1} P(0)=\frac{2}{0+1}(0.1353)=0.2706 \\
& \text { If } \left.r=1, P(2)=\frac{2}{1+1} P(1)=\frac{2}{2}(0.2706)=0.2706\right) \\
& \text { if } r=2, P(3)=\frac{2}{2+1} P(2)=\frac{2}{3}(0.2706)=0.1804 \\
& \text { If } r=3, P(4)=\frac{2}{3+1} P(3)=\frac{1}{3}(0.1804)=0.0902(1) \\
& \begin{aligned}
P(r \geqslant 4) & =P(4)+P(5)+P(6)+\cdots \\
& =1-[P(0)+P(1)+P(2)+P(3)]
\end{aligned} \\
& =1-[0.1353+0.2706+0.2706+0.1804] \\
& =1-0.8569 \\
& =0.1431(1) \text { Ans. }
\end{aligned}
$$

b. The life of army shoes is 'normally' distributed with mean 8 months and standard deviation 2 months. If $\mathbf{5 0 0 0}$ pairs are issued how many pairs would be expected to need replacement after 12 months? [Given that $P(z \geq 2)=0.0228$ and $z=\frac{x-\mu}{\sigma}$]

Q.9.b. Som:

$$
\text { Mean }(\mu)=8
$$

$$
\begin{aligned}
& \text { pean }(\mu)=\gamma \\
& \text { standard deviation }(\sigma)=2 \\
& \text { shoes }=500
\end{aligned}
$$

$$
\text { Number of pairs of shoes }=5000
$$

 Total month $(x)=12$

$$
\begin{aligned}
& \text { Total month }(x)=12 \\
& x-\mu-8
\end{aligned}
$$

$$
\text { when } z=\frac{x-\mu}{\sigma}-1=\frac{12-0}{2}
$$

$$
\text { Area }(z \geqslant 2)=0.0228 \text { (2) }
$$

Number of pairs whose life is more thaw 12 months $(z 72)=5000 \times 0.0228=114$ (2)
Replacement after 12 months $=5000-114$

Ans

Text books

1. Higher Engineering Mathematics -Dr. B.S.Grewal, 40th Edition 2007, Khanna Publishers, Delhi
2. A Text book of engineering Mathematics - N.P. Bali and Manish Goyal , 7th Edition 2007, Laxmi Publication (P) Ltd
