Q.2a. If $\mathbf{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ and $\mathrm{V}=\mathbf{r}^{\mathrm{m}}$, prove that
$\mathbf{V}_{\mathrm{xx}}+\mathrm{V}_{\mathrm{yy}}+\mathrm{V}_{\mathrm{zz}}=\mathbf{m}(\mathrm{m}+1) \mathrm{r}^{\mathrm{m}-2}$
dopes

$$
\sqrt[V]{=m^{n}}=y^{n}+y^{-} 12^{2}
$$

milusly

$$
\frac{\partial y}{\partial x^{2}}=m\left(x^{2} y^{2}+z^{2}\right)^{m}+m x\left(\frac{m}{2}-1\right)\left(x^{2}+y^{2}+z^{2}\right)^{m} 2^{-2}, 2 x
$$

$$
+m z\left(\frac{m}{2}-1\right)\left(h^{2}+42 p 2\right)^{m}-22
$$

b. If $\mathbf{x y z}=8$, find the values of $\mathbf{x}, \mathbf{y}, \mathbf{z}$ for which $\mathbf{u}=\frac{5 x y z}{x+2 y+4 z}$ is a maximum.
(b) ff $x y z=8$,

$$
u=\frac{5 x y z}{x+2 y+4 z}=\frac{40 x y}{32+x^{2} y+2 x y^{2}}
$$

$$
\frac{\partial x}{\partial x}=\frac{40 y}{32+x^{2} y+2 x y^{2}}-\frac{40 x y\left(2 x y+2 y^{2}\right)}{\left(32+x y+2 y^{2} y^{2}\right.}=\frac{40 y\left(32-x^{2} y\right)}{\left(32+x^{2} y+2 x^{2} y^{2}\right)^{2}}
$$

©xt. Chlue,

$$
\frac{\partial y}{\partial y}=\frac{40 x}{\left(32+x^{2} y+2 x y^{2}\right)}-\frac{40 x y\left(x^{2}+4 x y\right)}{(32+2 y+2 x y)^{2}}=\frac{40 x\left(32-2 x y^{2}\right)}{\left(32+x^{2}+2 x y^{2}\right)^{2}}
$$

$$
\frac{\partial u}{\partial x}=0, \frac{\partial y}{\partial y} \text { 20 Which fives us } x=2 y, y=2, x=4,2=
$$

$\delta=\frac{\partial^{3}}{5 x y}=\frac{1280-80 x^{2} y}{\left(32+x^{2} y+2 x\right)^{2}}-\frac{2\left(4 y\left(32-x^{2} y\right)\left(\left(x^{2}+4 x y\right.\right.\right.}{\left(32+x x^{2} y+2 x y^{2}\right)^{3}}=-\frac{5}{36}$ w $1+2=w_{1}, 1=2$
$t=\frac{\partial y}{\partial y z}=\frac{-80 x^{2} 2 y}{\left(32+x^{2} y+2 x y\right)^{2}}-\frac{80 x\left(32-2 x y^{2}\right)\left(x^{2}+4 x y\right)}{\left(32+x^{2} y+2 x y\right)^{2}}=-\frac{5}{9} \quad$ 小 $+2=h_{1} y_{2}=2$
ma or- $-8^{2} \geqslant 0$ and $L C$, so that at $x=4, y=2,2=1$ is m cux
Q. 3 a. Evaluate by changing order of integration of $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y$

 W have wert at at

$$
{ }^{\prime \prime} y_{=}
$$

b. Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=1$
(b) OABC b-twitatonanedoin bounded by cooriniqu

Planes and teepleme $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ which meets
chardunes apter at $A(a, 0,0), B)(0, b, 0), C(0,0, c)$. Divide

$$
\text { moves form } 7=01
$$ (abd $(1-x)\left(\left(1-\frac{-x}{a}-\frac{y}{b}\right)\right.$

$$
\begin{aligned}
& \text { mon es foam } 2=0+2=11-x \quad x_{1}+1 \\
& y=b\left(1-\frac{x}{a}\right)
\end{aligned}
$$

$$
\text { Madydz } a^{b\left(t^{h}\right)}
$$

$=$
-uv
Q. 4 a. Show that if $\lambda \neq-5$, the system of equations,

$$
\begin{aligned}
3 x-y+4 z & =3 \\
x+2 y-3 z & =-2 \\
6 x+5 y+\lambda z & =-3,
\end{aligned}
$$

have a unique solution. If $\lambda=-5$, then show that the equations are consistent. Find the solutions in each case.

b. Use Gauss elimination method to solve the equations,

$$
\begin{gathered}
x-y+z=6 \\
2 x+4 y+z=3 \\
3 x+2 y-2 z=-2
\end{gathered}
$$

$$
\text { (b) Givenequy are } \begin{aligned}
& x-y+z=6=0 \\
& 2 x+4 y+z=3-6 \\
& 3 x+9 y-\partial z=-2
\end{aligned}
$$

$$
\begin{aligned}
& 6 y=-z=-9-4 \\
& 5 y-5 z=-2 x-5
\end{aligned}
$$

Q. 5 a. Develop Newton - Raphson formula for finding \sqrt{N}, where N is a real number. Use it to find $\sqrt{41}$. Correct to 3 decimal places.
$\theta \cdot 5(5)$ der $x=\sqrt{N}$, i $x=N$
Bynlewton-Rahhomin. Its .l

$$
\begin{aligned}
& \text { Raphgm wettad, }(n+1)^{\text {R }} \text { iteration of } f(x)=0 \text { is g'venty } \\
& x\left(x_{n}\right)
\end{aligned}
$$

$$
\text { Hence } x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-N}{2 x_{n}}=\frac{x_{n}^{2}+N}{2 x_{n}}
$$

Rot of 41

$$
x_{n+1}=\frac{1}{g}\left[x_{n}+\frac{x}{x_{n}}\right]
$$

$$
\text { hin Lateen bol. Let grapporax. ont }=6
$$ bIbl,

$$
x_{2}=\frac{1}{2}\left[6,5+\frac{41}{6.5}\right]=
$$

Itshnos bur

$$
x_{3}=\frac{1}{2}\left[6.6385+\frac{11}{6.603585}\right]=6.6031 x
$$

b. Use Range - Gutta method of order four for find y at $x=0.2$ given that

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1
$$

taking $\mathrm{h}=0.2$
(b) Here

$$
\begin{aligned}
& f(\text { (i) } y)=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, x_{0}=0, y_{0}=1, k=0.2 \\
& \therefore K_{1}=w f\left(x_{0}, y_{0}\right)=(0-2) \frac{1^{2}-v^{2}}{1^{2}+0^{2}}=0.2 \\
& K_{2}=h_{1} f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)=(02) \frac{\left.(1.1)^{2}-1.1\right)^{2}}{(1.0)^{2}+(.1)^{2}}=0.1967 \\
& \begin{array}{l}
K_{25}=\omega f\left(x_{0}+\frac{b}{2}-y_{0}+\frac{k_{2}}{2}\right)=\frac{(1.0)^{2}+(.1)^{2}}{(1.0983)^{2}-(.1)^{2}}(1.0983)^{2}+(.1)^{2}
\end{array}=0.1967 \\
& \begin{array}{l}
k_{4}=w f\left(x_{0}+\frac{h}{2}+y_{1}+k_{3}\right)=2 \times \frac{(1.1967)^{2}-(12)^{2}}{(1.1967)^{2}+(12)^{2}}=0.1891 \\
k=k_{1}+2 k+2 k+k_{4}
\end{array} \\
& k=\frac{k_{1}+2 k_{2}+2 k_{3}+k_{4}}{6}=0.196 \\
& \text { Hence } y(0.2)=y_{0}+k=1.196
\end{aligned}
$$

Q. $6 \quad$ a. \quad Solve the differential equation $(1+x+y)^{2} \frac{d y}{d x}=1$
f(a) $P_{u t} 1+x+y=t^{2} \therefore 1+\frac{d y}{d x}=\frac{d t}{d x}$ or $\frac{d y}{d x}=\frac{d t}{d x}-1$ -
Sibstituting it migiven equ.

$$
t^{2}\left(\frac{d t}{d x}-1\right)=1 \text { or } t^{2} \frac{d t}{d x}=1+t^{2}
$$

or $\quad \frac{t^{2}}{1+t^{2}} d t=d x$ or $\frac{t^{2}+1-1}{1+t^{2}} d t=d x$
Litegrating

$$
t-\tan ^{-1} t=x+c
$$

Hever

$$
\begin{aligned}
& 1+x+y-\tan ^{-1}(1+x+y)=x+c \\
& H y=\tan ^{-1}(1+x+y)+c
\end{aligned}
$$

or
b. Show that the family of parabolas $x^{2}=u a(y+a)$ is self orthogonal
(b)

$$
\text { Sance } x^{2}=h a(y+a), \therefore 2 x=4 n \frac{d y}{d x}
$$

eliminating ' a ', weger

$$
x^{2}=\frac{2 x}{\frac{d y}{d x}}\left(y+\frac{x}{2 \frac{y y}{d x}}\right)
$$

Or

$$
x\left(\frac{d y}{d x}\right)^{2}=2 y \frac{d y}{d x}+x
$$ $\frac{d y}{d n}$ by - $\frac{d y}{d y} \operatorname{m}^{(1)}$, sidffieqh af orniognal sustem in

$$
x\left(-\frac{d x}{d y}\right)^{2}=2 y\left(-\frac{d x}{d y}\right)+x
$$

$$
x=-2 y \frac{d z}{d n}+x\left(\frac{d y}{d n}\right)^{4}
$$

Or

$$
x^{x p^{2}}\left(\frac{2}{d_{n}}\right)^{2}=\frac{2 y d x}{d_{n}}+x \text {-2 }
$$

Q. 7 a. Solve the equation $\left(D^{3}+2 D^{2}+D\right) y=x^{2} e^{2 x}+\sin ^{2} x$
$7(a)^{\prime}$

$$
\because C F=c_{1}+\left(c_{2}+c_{3} x\right) e^{-x} .
$$

$$
\text { and } P I=\frac{1}{D^{3}+2 D^{2}+D} \cdot\left(x^{2} e^{2 x}+\sin ^{2} x\right)
$$

$$
=e^{2 x} \frac{1}{(D+2)^{3}+2(D+2)^{2}+D+2} \cdot x^{2}+\frac{1}{2} \frac{}{D^{3}+2 D^{2}+D}(1-\cos 2 x)
$$

$$
=e^{2 x} \frac{1}{D^{3}+8 D^{2}+21 D+18}+\frac{x^{2}}{2}-\frac{x}{2(-4 D-8+D)}
$$

$$
=\frac{e^{2 x}}{18}\left[1+\frac{D^{3}+8 D^{2}+21 D}{18}\right]^{-1} \cdot x^{2}+\frac{x}{2}+\frac{1}{2(3 D+8)} \cos 2 x
$$

$$
=\frac{e^{2 x}}{18}\left[1-\frac{D^{3}+8 D^{2}+21 D}{18}+\left(\frac{\left.D^{3}+66+20\right)^{2}}{18}\right] x^{2}+\frac{x}{2}+\frac{1}{2} \frac{(3 x-8)}{-36-64} \cos 2 x\right.
$$

$$
=\frac{e^{2 x}}{18}\left[x^{2}-\frac{8.2}{18}-\frac{21,2 x}{18}+\frac{21,21.2}{18,18}\right]+\frac{x}{2}-\frac{1}{200}(-6 \sin 2 x-8 \cos 2 x)
$$

$$
=\frac{e^{2 x}}{18}\left[x^{2}-\frac{7}{3} x+\frac{11}{6}\right]+\frac{x}{2}+\frac{1}{100}(3 \sin 2 x+4 \cos 2 x)
$$

Hever cauplatesat.n

$$
y=c_{1}+\left(c_{2}+c_{2} x\right) e^{-x}+\frac{e^{2 x}}{18}\left(x^{2}-\frac{7}{3} x+\frac{11}{6}\right)+\frac{x}{2}+\frac{1}{10}(3 \sin 2 x+4 \cos 2 x)
$$

b. Use method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=\frac{e^{x}}{x}$

7 (b) $A E$ of giveneqh is $m^{2}-2 m+1=0$ ie, $m=10$
$\therefore F \cdot=\left(c_{1}+c_{2} x\right) e^{x}=c_{1} e^{x}+c_{2} x e^{x}$
To. find R. I by melted of rariadion y thasamehers, let
$y_{1}=e^{x} \quad, \quad y_{2}=x e^{x}$
Wronsk, 1 , $\operatorname{RHS}=X=\frac{e^{x}}{x}$
Wronskian $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{ll}e^{x} & n e^{x} \\ e^{x} & n e^{x}+e^{x}\end{array}\right|=e^{2 x}$

$$
\begin{aligned}
\therefore P \cdot I & =-y_{1} \int \frac{y_{2} x}{w} A x+y_{2} \int \frac{y_{1} x}{1 x} d x=-e^{x} \int \frac{x e^{x}}{e^{2 n}} \cdot \frac{e^{x}}{x} d x+x e^{x} \int \frac{e^{x}}{e^{2 x}} \cdot \frac{e^{x}}{x} d x \\
& =-x e^{x}+x e^{x} \log x . \\
\therefore C . S . \bar{s} \quad y & =\left(4+C_{2} x\right) e^{x}-x e^{x}+x e^{x} \log n=\left(G e c_{2} x\right) e^{x}+x e^{x} \log x
\end{aligned}
$$

Q. 8 a. Find the series solution of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+\left(1-x^{2}\right) y=0$
A. $8(a)$ Here $n=0$ is a singular point, so at the sabutim be

$$
y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots
$$

$$
\begin{aligned}
\therefore \frac{d y}{d n} & =m a_{0} x^{m-1}+(m+1) a_{1} x^{m}+(m+2) a_{2} x^{m+1}+\cdots \\
\frac{d^{2}(z}{d r 2} & =m(m-1) a_{0} x^{m-2}+(m+1) m a_{1} n^{m-1}+(m+2)(n+1) a_{2} x^{m}+\cdots
\end{aligned}
$$

Substituthig the in given oiff eqü, we ger

$$
22 x\left[m(m-1) a_{0} x^{m-2}+(m+1) a_{1} a^{m-1}+(m+2)(m+1) a_{2} x^{m}+\cdots \cdot\right]
$$

$$
\therefore x\left[m a_{0} x^{m-1}+(m+1) a_{1} x^{m}+(m+2) a_{2} x^{n+1}+\cdots\right]+\left(1-x^{2}\right)\left(a_{0} x^{m}+a_{1} x^{m+1} a_{2} a_{2}^{m+2}\right]=
$$

Inticial eqhis ottained hy equadny to zero the corfftsy lownt fower of she wer

$$
2 m(m-1) a_{0}-m a_{0}+a_{0}=0 \text { ie } m=1, \frac{1}{2} \quad\left(\because a_{0} \neq 0\right)
$$

equating to woro the cosffts y sncessive fowers of x, weget
$2(m+1) m a_{1}-(m+1) a_{1}+a_{1}=0 \quad \therefore a_{1}=0 \quad\left(\because m=1, \frac{1}{2}\right)$
$2(m+2)(m+1) a_{2}-(m+2) a_{2}+a_{2}-a_{0}=0$ or $a_{2}=\frac{a_{0}}{(m+2)(2 m+1)+1}=\frac{a_{6}}{(m+1)(2 m+3)}$

when $m=\frac{1}{2}, a_{2}=\frac{a_{0}}{2.3}, a_{4}=a, 2.4 .5 .9, \quad a_{6}=\frac{a_{1}}{2.4 .6 .5 .9 .13}$ c/2
\therefore If m=1, falh $\quad a_{4}=\frac{a_{10}}{2.4 .3 .7}, a_{6}=\frac{a_{6}}{2.4 .6 \cdot 3.7 .11}$ atc
Ifm2 $\frac{1}{2}$ sath $=a_{0} x+\frac{a_{0}}{2.5} x^{3}+\frac{a_{0}}{2,4.5 \cdot \eta} x^{5} \cdots=a_{0} x\left(1+\frac{n^{2}}{2 \times 5}+\frac{x^{4}}{2 \times 4 \times 5 \times n}+\cdots\right)$
$y_{2}=a_{1} x^{1 / 2}+a_{1} x^{5 / 2}+a_{1} a / 2 \quad(2 \quad l$
Hencecouplutesin $\quad 2.3+\frac{1}{2.4 .3 .7} x^{12}+\cdots=a_{4} \sqrt{x}\left(1+\frac{x^{2}}{2.3}+\frac{x}{2.1,3.7}+\cdots\right)$

$$
\begin{aligned}
y=c_{1} y_{1}+c_{2} y_{2}=c_{1}\left(1+\frac{x^{2}}{2 \times 5}\right. & \left.+\frac{x^{4}}{2 \times 1 \times 5 \times 9}+\cdots\right) \\
& +C_{2} \sqrt{x}\left(1+\frac{x^{2}}{2 \times 3}+\frac{x^{4}}{2 \alpha 4 \times 3 \times 7}=\cdots\right)
\end{aligned}
$$

b. Show that $\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x=(b-a)^{m+n+1} \beta(m+1, n+1)$
(b) Touraluat $\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x$, fit $x-a=t, ~ a d x=d L$
$=\int_{0}^{b-a} t^{m}(b-a-t)^{n} d t$, row put $t=(b-a) z$
$=(b-a)^{m} \int_{0}^{1} z^{m}(b-a)^{n}(1-z)^{n}(b-a) d z$
$=(b-a)^{m+n+1} \int_{0}^{0} z^{m+1-1}(1-z)^{n+1-1} d z=(b-a)^{m+n+1} \beta(m+1, n+1)$
Q. 9 a. Prove that $\quad P_{n}(x)=\frac{1}{n} \frac{1}{2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
$Q a(s)$ Let $v=\left(x^{2}-1\right)^{n}$

$$
\therefore v_{1}=\frac{d v}{d x}=n\left(x^{2}-1\right)^{n-1} 2 x=\frac{2 n x\left(x^{2}-1\right)^{n}}{x^{2}-1}
$$

$$
\text { or } \quad\left(x^{2}-1\right) v_{1}-2 x x\left(x^{2}-1\right)^{n}=0 \text { or }\left(1-x^{2}\right) 2_{1}+2 x x v^{\circ}
$$

Daff -it ($n+1$) times by deitinnitz' method, we ger

$$
\left(1-x^{2}\right) v_{n+2}+(n+1) v_{n+1}(-2 x)+\frac{(n+1) n)}{2} v_{n}(-2)+2 x x v_{n+1}+2 n(n+1) v_{n}=0
$$

or $\left(1-x^{2}\right) \frac{d^{2} v_{n}}{d x^{2}}-2 x \frac{d v_{n}}{d x}+n(n+1) v_{n}=0$
of 5 Legendre's equation of order n and $C V_{n}$ is its selim. Also $P_{n}(x)$ is ats solution

$$
\therefore \quad P_{n}(x)=c v_{n}=c \frac{d^{n}}{d n^{n}}\left(x^{2}-1\right)^{x}
$$

Tofind c, $\operatorname{funt}^{2} x=1$.

$$
\therefore P_{n}(1)=1=C\left[\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}\right]_{a t x=1}
$$

$$
=c\left[\frac{a^{2}}{d x^{2}}(x-1)^{2}(x+1)^{2}\right]_{x=1}
$$

$$
=c\left[\ln (x+1)^{n}+\text { terms containing }(x-1) \text { and its powers }\right]_{x=1}
$$

Hence

$$
=c \underline{n} 2^{n} \quad, \therefore c=\frac{1}{2^{2} n}
$$

$$
P_{n}(x)=\frac{1}{2^{n} x^{n}} e_{n}=\frac{1}{2^{n} w^{w}} \frac{d^{x}}{d x^{n}}\left(x^{2} n\right)^{2} D:
$$

b. Show that :
$\frac{d}{d x}\left\{J_{n}^{2}(x)+J_{n+1}^{2}(x)\right\}=2\left\{\frac{n}{x} J_{n}^{2}(x)-\frac{n+1}{x} J_{n+1}^{2}(x)\right\}$
(b)

$$
=2 \hat{J}_{n}(n) \cdot\left[\frac{n}{x} \tilde{x}_{n}-\int_{n+1}\right]+2 \hat{J}_{n+1}(x)\left[\int_{n+1} \frac{n+1}{x} \int_{n+1}(n)\right]
$$

$$
=2 J_{n}^{2} \ln \left(\frac{x}{x}-2 J_{n+1}^{2} \frac{n+1}{x}\right.
$$

$$
=2\left[\frac{n}{x} \int_{n}^{2}(n)=\frac{n+1}{x} J_{n+1}^{2}\right]
$$

$=\frac{n}{x} J_{n}-J_{n+1}$

Textbooks

1. Higher Engineering Mathematics, Dr. B.S.Grewal, 40th edition 2007, Ghana publishers, Delhi
2. Text book of Engineering Mathematics, NP Bali and Manish Goral, $7^{\text {th }}$ Edition 2007, Laxmi Publication (P) Ltd.
