Q. 2 a. Show that the real and imaginary parts of the function $w=\log z$ satisfy the Cauchy - Riemann equations when z is not zero. Find its derivatives.

Answer:

$$
\text { Mene } \begin{aligned}
\omega & =\log z \\
& =\log (x+i y)
\end{aligned}
$$

To separate the hall and Imaginary pantos, put $x=r \cos \theta, y=r \sin \theta$ and $\omega=a+i c e$ ire.

$$
\begin{aligned}
& w=\operatorname{ly} z \Rightarrow u+i v=\log ^{w}(r \cos \theta+i \sin \theta) \\
&=\log _{e} r e^{i \theta} \\
&=\log _{e} r+\log _{e} e^{i \theta} \\
&=\log _{e} r+i \theta \\
&=\log _{e} \sqrt{x^{2}+y^{2}}+i \tan ^{-1}\left(\frac{y}{x}\right) \\
& \quad u+i v=\frac{1}{2} \log _{e}\left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{y}{x}\right) \\
& \Rightarrow u=\frac{1}{2} \log _{e}\left(x^{2}+y^{2}\right) ; \tan ^{2}\left(\frac{y}{x}\right)
\end{aligned}
$$

How

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{1}{2} \cdot \frac{1}{\left(x^{2}+y^{2}\right)} \cdot(2 x)=\frac{x}{x^{2}+y^{2}} \text { (i) } \\
& \frac{\partial L}{\partial b y}=\frac{1}{1+\frac{y^{2}}{x^{2}}}\left(\frac{1}{x}\right)=\frac{x}{x^{2}+y^{2}} \text { _(ii) } \tag{ii}
\end{align*}
$$

From (i) and (ii) $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}$
Again

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{y}{x^{2}+y^{2}} \text {-(iii), } \frac{\partial u}{\partial x}=\frac{-y}{x^{2}+y^{2}} \tag{iv}
\end{equation*}
$$

From (iii) q (iv)

$$
\begin{equation*}
\frac{\partial u}{\partial y}=-\frac{\partial u}{\partial x} \text { are C-R qu } \tag{B}
\end{equation*}
$$

Hence $w=\log z$ is analytic function ar except (7) when $x^{2}+y^{2}=0 \Rightarrow x=0=y=0 \Rightarrow x+i y=0$
How

$$
\begin{aligned}
& \begin{aligned}
\frac{d w}{d z}=\frac{\partial u}{d x}+i c & \Rightarrow z=0 \\
& \Rightarrow \frac{\partial u}{\partial x}= \\
& =\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} \\
x^{2}+y^{2} & =\frac{x-i y}{(x+i y)(x-i y)} \\
& =\frac{1}{x+i y}=\frac{1}{z}
\end{aligned} \\
& \text { u ce }=1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{d w}{d z}=\frac{1}{2}, \text { which is the } \\
& \text { reit } \frac{1}{2} \\
& \text { required derivatives. }
\end{aligned}
$$

b. Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path (i). $\mathrm{y}=\mathrm{x}$
(ii). $y=x^{2}$.
(8)

Answer: \qquad

$$
\text { Let } \begin{aligned}
I & =\int_{0}^{1+i}\left(x^{2}-i y\right) d z \\
& =\int\left(x^{2}-i y\right)(\text { dreeidy })
\end{aligned}
$$

(i) along the path $y=x$, then $d y=d x$ and $x=0$ to 1 when

$$
\begin{aligned}
I_{1} & =\int_{0}^{1}\left(x^{2}-i x\right)(d x+i d x) \\
& =\int_{0}^{1}\left(x^{2}-i x\right)(1+i) d x \\
& =(1+i)\left(\frac{x^{3}}{3}-i \frac{x^{2}}{2}\right)_{0}^{1} \\
& =(1+i)\left(\frac{1}{3}-\frac{i}{2}\right)=\frac{5}{6}-\frac{i}{6}
\end{aligned}
$$

(ii) Glom the pother $y=x^{2}$ then $d y=2 x d x$ and $x=0$ to 1. then

$$
\begin{aligned}
I_{2} & =\int_{0}^{1}\left(x^{2}-i x^{2}\right)(d x+i 2 x d x) \\
& =\int_{0}^{1} x^{2}(1-i)(1+2 i x) d x \\
& =(1-i) \int_{0}^{1} x^{2}(1+2 i x) d x \\
& =(1-i)\left[\frac{x^{3}}{3}+2 i \frac{x^{4}}{4}\right]_{0}^{1} \\
& =(1-i)\left(\frac{1}{3}+\frac{i}{2}\right) \\
& =\frac{5}{6}+\frac{i^{1}}{6}
\end{aligned}
$$

Q. 3 a. Find the bilinear transformation, which maps $z_{1}=0, z_{2}=1, z_{3}=\infty$ in to

$$
\begin{equation*}
w_{1}=i, w_{2}=-1, w_{3}=-i \tag{8}
\end{equation*}
$$

Answer:
Here $z_{1}=0, z_{2}=1, z_{3}=\infty$ and

$$
w_{1}=i, w_{2}=-1, b v_{3}=-i
$$

Here $z_{3}=\infty$, so that we cam not apply the for morula

$$
\frac{w-w_{1}}{w-w_{3}} \cdot \frac{w_{2}-w_{3}}{w_{2}-w_{1}}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)} \text { sire b }
$$

so we com white it as

$$
\begin{aligned}
& \frac{w-w_{1}}{w-w_{3}} \frac{w_{2}-w_{3}}{w_{2}-w_{1}}=\frac{\left(z-z_{1}\right)\left(\frac{z_{2}}{z_{3}}-1\right)}{\left(\frac{z}{z_{3}}-1\right)\left(z_{2}-z_{1}\right)} \\
& \text { substitut ins the ale }
\end{aligned}
$$

Now substituting the all $\left(\frac{2}{z_{3}}-1\right)$

$$
\frac{w-i}{w+i} \cdot \frac{-1+i}{-1-i}=\frac{(z-0)(0-1)}{(0-1)(1-0)} \Rightarrow \frac{w-i}{w+i}(-i)=z
$$

$$
w=-i \frac{z-i}{z+i}=-\left(\frac{i z+1}{z+i}\right) \text { Ane. }
$$

b. Find the terms in the Laurent expansion of $f(z)=\frac{1}{(z+1)(z+3)}$, for the region (i) $1<|z|>3$
(ii) $|z|<1$

Answer:
Solution (b).
Here

$$
\begin{aligned}
f(2) & =\frac{1}{(z+1)(z+3)} \\
& =\frac{1}{2}\left[\frac{1}{z+1}-\frac{1}{z+3}\right]
\end{aligned}
$$

case (i)

$$
\Rightarrow \frac{1}{2}<1 \text { and } \frac{3}{3}<1
$$

$$
f(2)=\frac{1}{2}\left[\frac{1}{2\left(1+\frac{1}{2}\right)}-\frac{1}{3\left(1+\frac{2}{3}\right)}\right]
$$

$$
=\frac{1}{2}\left[\frac{1}{2}\left(1+\frac{1}{2}\right)^{-1}-\frac{1}{3}\left(1+\frac{2}{3}\right)^{-1}\right]
$$

$$
=\frac{1}{2}\left[\frac{1}{2}\left(1-\frac{1}{z}+\frac{1}{z^{2}}-\frac{1}{z^{3}}+\cdots\right)-\frac{1}{3}\left(1-\frac{z}{3}+\frac{z^{2}}{3^{2}}-\right.\right.
$$

$$
\left.\left.\frac{2^{3}}{3^{3}}+\cdots\right)\right]
$$

$$
=\left(\frac{1}{2 z}-\frac{1}{2 z^{2}}+\frac{1}{2 z^{3}}-\frac{1}{2 z^{4}}+\cdots\right)-\frac{1}{6}+\frac{z}{18}
$$

$$
-\frac{z^{2}}{54}+\frac{z^{3}}{162} \cdots
$$

$$
=\cdots-\frac{1}{2 z^{4}}+\frac{1}{2 z^{3}}-\frac{1}{2 z^{2}}+\frac{1}{2 z}-\frac{1}{6}+\frac{z}{18}-\frac{z^{2}}{54}
$$

$$
+\frac{z^{3}}{162} \cdots \cdots
$$

which is the hequiched series when

$$
1<2<3
$$

Case (ii) $|z|<1$, then

$$
\begin{aligned}
& f(z)\left.=\frac{1}{(z+1)(z+3)}=\frac{1}{2(z+1)}-\frac{1}{z+3}\right] \\
&=\frac{1}{2}(1+2)^{-1}-\frac{1}{2}(3+z)^{-1} \\
&=\frac{1}{2}(1-2)^{-1}-\frac{1}{6}\left(1+\frac{2}{3}\right)^{-1} \quad(\because(z)<1 \\
& f(2)=\frac{1}{2}\left(1-z+z^{2}-2^{3}+\cdots\right)-\frac{1}{6}\left(1-\frac{z}{3}+\frac{z^{2}}{9}-\frac{z^{3}}{27}+\cdots\right) \\
&=\left(\frac{1}{2}-\frac{1}{6}\right)+\left(-\frac{2}{2}+\frac{3}{18}\right)+\left(\frac{z^{2}}{2}-\frac{z^{2}}{54}\right)+ \\
&=\left.\frac{1}{3}-\frac{z^{3}}{2}+\frac{z^{3}}{162}\right)+\frac{1}{9}+\frac{13}{27} z^{2}-\frac{40}{81} z^{3}+\cdots
\end{aligned}
$$

which is the kaquimed exparsicen.
Q. 4 a. If $\vec{r}=x i+y j+z k, \quad \mathrm{a}=|\vec{r}|$ and \vec{a} is a constant vector, then find the value of $\operatorname{div}\left[\frac{\vec{a} \times \vec{r}}{r^{n}}\right]$
Answer:
Here $\vec{r}=x i+y j+z k$, then

$$
\kappa=|\vec{x}|=\sqrt{x^{2}+y^{2}+z^{2}} \text { and }
$$

Ret $\vec{a}=a_{1} i+a_{2} j+a_{3} k$
Now $\vec{a} \times \vec{r}=\left|\begin{array}{lll}i & j & k \\ a_{1} & a_{2} & a_{3} \\ x & y & z\end{array}\right|$

$$
\begin{gathered}
=i\left(a_{2} z-a_{3} y\right)-j\left(a_{1} z-a_{3} x\right)+k \\
\left(a_{1} y-a_{2} x\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& \frac{\vec{a} \times \vec{m}}{\left|\overrightarrow{z^{2}}\right|^{n}}=\frac{\left(a_{2} z-a_{3} y\right) i-\left(a_{1} z-a_{3} x\right) j+\left(a_{2} y-a_{2} z\right) k}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n}{2}}} \\
& \operatorname{div}\left[\frac{\vec{a} \times \vec{m}}{|\vec{k}|^{n}}\right]=\nabla \cdot \frac{\overrightarrow{a x} \vec{a}}{|\vec{\varepsilon}|^{n}} \\
& =\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right) \cdot\left(a_{2} z-a_{3} y\right) i-\left(a_{1} z-a_{3} x\right) j \\
& \frac{+\left(a_{1} y-a_{2} x\right) k}{\left(x^{2}+y^{2}+z^{2}\right)^{4 / 2}} \\
& =\frac{\partial}{\partial x} \frac{\left(a_{2} z-a_{3} y\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}-\frac{\partial}{\partial y} \frac{\left(a_{1} z-a_{3} x\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{h / 2}}+ \\
& \frac{\partial}{\partial z} \frac{\left(a_{1} y-a_{2} x\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{m / 2}} \\
& =-\frac{n}{2} \frac{\left(a_{2} z-a_{3} y\right) 2 x}{\left(x^{2}+y^{2}+z^{2}\right) \frac{n+2}{2}}+\frac{n}{2} \frac{\left(a_{1} z-a_{3} x\right) 2 y}{\left(x^{2}+y^{2}+z^{2}\right) \frac{n+2}{2}}+ \\
& n \frac{\left(a_{1} y-a_{2} x\right) z z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n+2}{2}}} \\
& =\frac{n}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n+2}{2}}\left[\left(a_{2} z-a_{3}^{\prime} y\right) x-\left(a_{1} z-a_{3} x\right) y+\right.} \\
& \left.\left(a_{1} y-a_{2} x\right) z\right] \\
& =-\frac{n}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n+2}{2}}\left[a_{2} z x-a_{3} x y-a_{1} y z+a_{3} x y\right.} \\
& \left.+a_{1} y z-a_{2} x z\right] \\
& =0
\end{aligned}
$$

renee $\operatorname{drv}\left[\frac{\vec{a} \times \vec{r}}{r^{h}}\right]=0$
b Define CURL of a vector point function with physical interpretation.
(8)

Answer:
Definition of CURL:
Let $\vec{F}=\vec{F}_{1} i+\vec{F}_{2} j+\vec{F}_{3} k$ be any
vector point function \vec{F}, then the curl of a vector point function \vec{F} is defineal as below ic.

$$
\begin{aligned}
& \text { cure } \vec{F} \text { or } \nabla \times \vec{F}=\left(\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k\right) \times\left(\overrightarrow{F_{1}}++\right. \\
& \left.\overrightarrow{F_{2 j}}+\overrightarrow{F_{j}} k\right) \\
& =\left|\begin{array}{lll}
i & j & k \\
\frac{V_{1}}{\partial x} & \frac{\partial_{2}}{\partial y} & \frac{\overrightarrow{\theta_{3}}}{\partial z} \\
R_{1} & R_{2} & F_{3}
\end{array}\right| \\
& =i\left[\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right]-j\left[\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right]+ \\
& k\left[\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right]
\end{aligned}
$$

curl \vec{F} is a rector quantity.
Physical Interpretation of curl:-
Let $\vec{\omega}=m_{1} i+m_{2} j+w_{3} k$ is the angular velocity and \vec{r} is the position vector of a point on a rotating body .ina, $\vec{r}=x i+y j+z k$
we know that $\vec{V}=\vec{\omega} \times \vec{r}$, where \vec{V} is the linear velocity, then

$$
\text { curl } \vec{v}=\nabla \times \vec{v} \Rightarrow \nabla \times(\vec{\omega} \times \vec{r})
$$

$$
\begin{aligned}
& =\nabla \times\left[\left(w_{1} i+w_{2} j+w_{3} k\right) \times\left(x-\frac{(207 / 2)}{(13)}+y j+z k\right)\right] \\
& =\pi \times\left|\begin{array}{ccc}
i & j & k \\
w_{1} & w_{2} & w_{3} \\
x & y & z
\end{array}\right| \\
& =\nabla \times\left[\left(\omega_{2} z-\omega_{3} y\right) i-\left(\omega_{1} z-\omega_{3} x\right) j+\left(w_{1} y-\omega_{2} x\right) k\right] \\
& =\left(\frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right) \times\left[\left(w_{2} z-w_{3} y\right) i-\left(w_{1} z-\right.\right. \\
& \left.\left.\left.w_{3} x\right) j+\left(w_{1} y-w_{2} x\right) k\right)\right] \\
& =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\left(w_{2} z-w_{3} y\right) & \left(w_{1} z-w_{3} x\right) & \left(w_{1} y-w_{2} x\right)
\end{array}\right| \\
& =\left(w_{1}+w_{1}\right) \hat{j}-\left(-w_{2}-w_{2}\right) j+\left(w_{3}+w_{3}\right) k \\
& =2\left(w_{1} i+w_{2} j+w_{3} k\right) \\
& =2 w
\end{aligned}
$$

\therefore curl $\vec{V}=2 \mathrm{w}$, which shours that aural of a vector field is connected with rotational properties of the vector field.

If cure $\vec{F}=0$, the fielal \vec{F} is termed as irrofationcel.
Q. 5 a. Evaluate $\int_{c} \vec{F} \bullet d \vec{r}$, where $\vec{F}=\frac{i y-j x}{x^{2}+y^{2}}$ and c is the circle $x^{2}+y^{2}=1$ traversed counter clockwise.

Answer:

$$
\begin{aligned}
\text { Let } \vec{r} & =x i+y j+g k \\
d \vec{r} & =d x i+d y j+d z k \\
\text { Here } \vec{F} & =\frac{i y-j x}{x^{2}+y^{2}} \\
\text { How } \vec{F} \cdot d \vec{r} & =\left(\frac{i y-x j}{x^{2}+y^{2}}\right) . \quad(\text { en i }+d y \cdot j+d(k) \\
= & \frac{d x y}{x^{2}+y^{2}}-\frac{x d y}{x^{2}+y^{2}} \Rightarrow \frac{y d x-x d y}{x^{2}+y^{2}} \\
\int_{c} \vec{F} \cdot d \vec{r} & =\int_{c} y d x-x d y \quad: x^{2}+y^{2}=1
\end{aligned}
$$

Now parametric Equation of the circle

$$
\begin{aligned}
x & =r \cos \theta, y=r \sin \theta ; r=1 \\
d x & =-r \operatorname{sig} \theta d \theta, d y=r \cos \theta d \theta \\
\therefore \int_{c} \vec{F} \cdot d \vec{r} & =\int_{0}^{2 \pi} r \sin \theta(-r \sin \theta d \theta)-r \ln \theta(r \ln \theta \cdot 2) \\
& =\int_{0}^{2 \pi}\left(-\sin ^{2} \theta-\cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}-d \theta=1-(-\theta]_{0}^{2 \pi}=-2 \pi
\end{aligned}
$$

Hence $\int_{c} \vec{F} d \vec{\varepsilon}=-2 \vec{n}$
b. Verify Stocks's Theorem for $\vec{F}=\left(x^{2}+y-4\right) i+3 x y j+\left(2 x z+z^{2}\right) k$ over the surface of hemisphere $x^{2}+y^{2}+z^{2}=16$ above the $x-y$ plane.

Answer:
wo know that stoke ls theorem is

$$
\int_{c} \vec{F} \cdot d \vec{r}=\iint_{s}(\nabla \times \vec{F}) \cdot n \quad d s
$$

How $\int_{C} \vec{F} \cdot d \vec{r}$, where C is the boundary of the sphoue ire. circle
and $\vec{F}=\left(x^{2}+y-4\right) i+3 x y j+\left(2 x z+z^{2}\right) k$

$$
\begin{aligned}
\therefore \int_{c} \vec{F} \cdot d \vec{r} & =\int_{c}\left[\left(x^{2}+y-4\right) i+3 x y j+\left(2 x z+z^{2}\right)^{c} k\right] \cdot(d x i+d y . \\
& =\int_{c}\left[\left(x^{2}+y-4\right) d x+3 x y d y\right]
\end{aligned}
$$

How parametric equation of circle

$$
\begin{aligned}
& x=4 \cos \theta \Rightarrow d x=-4 \sin \theta d \theta \\
& y=4 \sin \theta \Rightarrow d y=4 \cos \theta d \theta \\
& \therefore \int_{c} \vec{P} \cdot d \vec{r}=\int_{0}^{2 \pi}\left[\left(16 \cos ^{2} \theta+4 \sin \theta-4\right)(-4 \sin \theta d \theta)+\right. \\
&3(4 \cos \theta)(4 \sin \theta)(4 \cos \theta) d \theta] \\
&=16 \int_{0}^{2 \pi}\left(-4 \cos ^{2} \theta \sin \theta-\sin ^{2} \theta+\sin \theta+12 \sin \theta \cos ^{2} \theta\right) \\
&=16 \int_{0}^{2 \pi}\left(8 \sin \theta \cos ^{2} \theta-\sin 2 \theta+\sin \theta\right) d \theta \\
&=-16 \int_{0}^{2 \pi} \sin ^{2} \operatorname{con}^{2} \operatorname{Rrtan}-1 \quad\left(\because \int_{0}^{2 \pi} \sin ^{n} \theta \cos \theta d \theta=0\right. \\
& \int_{0}^{2 \pi} \cos ^{n} \theta \sin \theta d \theta=0
\end{aligned}
$$

$$
\begin{aligned}
& =-16 \times 4 \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \\
& =-64\left(\frac{1}{2} \cdot \frac{\pi}{2}\right) \\
\int_{C} \vec{F} \cdot d \vec{r} & =-16 \pi
\end{aligned}
$$

Now

$$
\iint_{s}(\nabla \times \vec{F}) \cdot n^{n} d s
$$

$$
\text { Now } \nabla \times \vec{F}=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}+y-4 & 3 x y & 2 x z+z-
\end{array}\right|
$$

$$
=i(0-0)-j(2 z-0)+k(3 y-1)
$$

$$
\nabla \times \vec{F}=-2 z j+(3 y-1) k
$$

$$
\hat{n}=\frac{\nabla Q}{|\nabla Q|}=\frac{\left(i \frac{\partial}{\partial x}+5 \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}-16\right)}{||\varphi|}
$$

$$
\begin{aligned}
& =\frac{2 x i+2 y j+2 z k}{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}} \\
& =\frac{x i+y j+z k}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x i+y j+k z}{4}
\end{aligned}
$$

$$
\begin{aligned}
\therefore(\nabla \times \vec{F}) \cdot n & =(-2 z j+(3 y-1) k) \cdot\left(\frac{x i+y j+z k}{4}\right) \\
& =\frac{-2 y z+(3 y-1) z}{4} \\
n \cdot n \cdot n d s=d x d y & \Rightarrow \frac{x i+y j+z k}{4} \cdot k d s=d x d y \\
& \Rightarrow \frac{z}{4} d s=d x d y
\end{aligned}
$$

$$
=d s=\frac{d x d y}{} \times \frac{4}{z}
$$

Mence

$$
\begin{aligned}
\iint(\pi \times \vec{F}) n^{n} d s & =\iint \frac{-2 y z+(3 y-1) z}{4} \times\left(\frac{4}{z} d n d y\right. \\
& =\iint[-2 y+(3 y-1)] d x d y \\
& =\iint(y-1) d x d y
\end{aligned}
$$

on puttilng,

$$
\begin{aligned}
x & =r \cos \theta \cdot d x d y=r d \theta \\
& =r \sin \theta \\
& =\int d \theta \int\left(r^{2} \sin \theta-1\right) r d \theta d r \\
& =\int_{0}^{2 \pi} d \theta\left(\frac{r^{3}}{3} \sin \theta-\frac{r^{2}}{2}\right)_{0}^{4} \\
& =\int_{0}^{2 \pi} d \theta\left(\frac{16}{3} \sin \theta-8\right) \\
& =\left[-\frac{64}{3} \cos \theta-80\right]_{0}^{2 \pi} \\
& =-\frac{64}{3}-16 \frac{\pi}{n}+\frac{64}{3} \\
& =-\frac{16 \pi}{n}
\end{aligned}
$$

Hence the line integhal is Equal to the srurfaice integhal, heince stoklis theorem is veaified.
Q. 6 a. State and Prove Lagrange's interpolation formula.

Answer:
Statement:- Let $y=f(x)$ be a function, Which takes the values $f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right)$ $f\left(x_{n}\right)$ corresponding to the llalues of $x=x_{0}, x_{1}, x_{2}, \ldots x_{n}$, not necessarily Equal spaced, their

$$
\begin{array}{r}
f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \cdots\left(x_{1}-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x-x_{2}\right) \cdots\left(\cdots x_{n}\right.} \\
+\cdots \frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}\right)} \\
\text { Proof } \quad
\end{array}
$$

Proof: Let $y=f(x)$ be a function which can assume the value $f\left(x_{0}\right), f\left(x_{1}\right) \ldots f\left(\mathrm{~m}_{n}\right) \cos$. -es pounding to the values of the argument $\cdots x_{0}, x_{1}, x_{2} \ldots x_{n}$ respectively.
since the ne ane $(n+1)$ pairs of Value, of x and y, therefore, we can represent $f(x) b y$ a polynomial in x of dagueen. ie.

$$
\begin{align*}
f(x)= & A_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)+A_{1}\left(x-x_{0}\right)\left(x-x_{2}\right) \\
& \cdots\left(x-x_{n}\right)+A_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right) \\
& +\cdots+A_{1}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right) \tag{A}
\end{align*}
$$

where $A_{0}, A_{1}, A_{2}, A_{3} \ldots A_{n}$ are constants
It cam be determined by putting $f(x)=f\left(x_{0}\right)$ at $x=x_{0,} f(x)=f\left(x_{1}\right)$ at $x=x_{1}$ and cen

Rut $x=x_{0}$ and $f(x)=f\left(x_{0}\right)$ in Equation (A) (19)

$$
\begin{aligned}
f\left(x_{0}\right) & =A_{0}\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right) \\
\therefore A_{0} & =\frac{f\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)}
\end{aligned}
$$

again put $x=x_{1}$ and $f(x)=f\left(x_{1}\right)$ in (A), then

$$
\begin{array}{r}
f\left(x_{1}\right)=A_{1}\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-x_{n}\right) \\
\therefore A_{1}=\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)}
\end{array}
$$

Proceeding in the rime may, we get . the value of $A_{1}, A_{2}, A_{3} \ldots$. An ie.

$$
A_{i}=\frac{f\left(x_{i}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{n}\right)}
$$

Putting all values of $A_{6}, A_{1}, A_{2} \ldots A_{i} \ldots A_{n}$ in Equation (A), wo get

$$
\begin{aligned}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)-f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right.}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \cdots} \\
& f\left(x_{1}\right)+\cdots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)\left(x_{1}-x_{n}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x-x_{n-1}\right)} f\left(x_{n}\right)
\end{aligned}
$$

which is the required lagskanges s interpolation formula.
b. Evaluate $\int_{0.5}^{0.7} \sqrt{x} e^{-x} d x$ by Simpson's $\frac{1}{3}$ rule.

Answer:

$$
\text { Let } I=\int_{0.5}^{0.7} \sqrt{x} e^{-x} d x
$$

Here internal is $(0.5,0.7)$. on dividing the internal in to 4 equal pants each of width $h=\frac{0.7-0.5}{4}=0.05$
Mene $f(x)=\sqrt{x} e^{-x}$, Now

x	0.5	$0.5^{2 x_{4}} 5$	0.60	$0^{x_{3}} 65$	$x_{2}^{x_{2}}=$
$y=\sqrt{x} e^{-x}$	0.42888 y_{0}	0.42787	0.42511	0.42088	0.41547
y_{1}	y_{2}	y_{3}	y_{4}		
Let $x=x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ are $0.5,0.55,0.60,0.65$					

Let $x_{1}=x_{0}, x_{1}, x_{2}, x_{3}, x_{1}$ are $0.5,0.55,0.60,0.65$ and 0.70 , then the value of
y are $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ ie. $0.42888,0.42787$,

$$
0.42511,0.42088 . \text { and } 0.41547
$$

Now simpson' is $\frac{1}{3}$ kirtle is

$$
\begin{aligned}
\int_{0.5}^{0.7} \sqrt{x} e^{-x} d x= & \frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{3}\right)+2 y_{2}+y_{4}\right] \\
= & \frac{0.05}{3}[0.42888+4(0.42787+0.42008) \\
& +2(0.42511)+0.41547] \\
= & \frac{0.05}{3}[0.84435+4(0.84875)+0.85022] \\
= & \frac{0.05}{3}(5.08957) \\
= & 0.08483
\end{aligned}
$$

Q. 7 a. Form the partial differential equation by eliminating the function f from the relation $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$.
Answer:

$$
\begin{equation*}
\text { Here } z=y^{2}+2 f\left(\frac{1}{x}+\log y\right) \tag{1}
\end{equation*}
$$

For formation the P.D.E,
Differentiate (1) w-r-to $x \&$ y as partially
$\frac{\partial 2}{\partial x}=2 f^{\prime}\left(\frac{1}{x}+\right.$ (by $\left.y\right) \cdot(1)$

$$
\begin{align*}
& p=\frac{\partial L}{\partial x}=2 f^{\prime}\left(\frac{1}{x}+\log y\right) \cdot\left(-\frac{1}{x^{2}}\right) \\
& -p x^{2}=2 f^{\prime}\left(\frac{1}{x}+\log y\right) \tag{2}\\
& \text { nd (2) } \\
& q=\frac{\partial 2}{\partial y}=2 y+2 f^{\prime}\left(\frac{1}{x}+\log y\right)\left(\frac{1}{y}\right) \tag{3}\\
& q y-2 y^{2}=2 f^{\prime}\left(\frac{1}{x}+\log y\right)
\end{align*}
$$

and

From equation (1) and (3), we set

$$
\begin{aligned}
& -p x^{2}=q y-2 y^{2} \\
& x^{2} p+q y=2 y^{2}
\end{aligned}
$$

which is a partial differential Eqpration of the first ondar.
b. Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=y \cos x$

Answer:
Solution (b) there the equation is

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2}}{\partial x \partial y}-\frac{6 \partial^{2} z}{\partial y^{2}}=y \cos x
$$

Let $\frac{\partial}{\partial x}=\Delta$ and $\frac{\partial}{\partial y}=D^{\prime}$ then

$$
\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right)^{\prime} z=y \cos x
$$

$A \cdot E$ in $m^{2}+m-6=0$; Rent $D=m$ and $s=1$

$$
m=-3,2
$$

$$
\therefore C \cdot F \quad f_{1}(y-3 x)+f_{2}(y+2 x)
$$

How To finel P.E

$$
\text { Hene } m=3, \quad y=m x+
$$

$$
=\int[(c+3 x) \sin x-2 \cos x] d x \quad y=3 x+c
$$

$$
=(c+3 x)(-\cos x)-\int 3(-\cos x) d x-2 \sin x
$$

$$
=(y-3 x+3 x)(-\cos x)+3 \sin x-2 \sin x
$$

$$
=-y \cos x+3 \sin x-2 \sin x
$$

$$
=-y \cos x+\sin x
$$

Hente complete solintion is given by

$$
z=f_{1}(y-3 x)+f_{2}(y+2 x)-y \cos x+\sin x
$$

$$
\begin{aligned}
& B . I=\frac{1}{D^{2}+\Delta \Delta^{\prime}-6 D^{\prime 2}} b \cos x \\
& =\frac{1}{\left(D+3 D^{\prime}\right)\left(D-2 D^{\prime}\right)} y \cos x \\
& =\frac{1}{\left(D+3 D^{\prime}\right)} \cdot \frac{1}{\left(D-2 D^{\prime}\right)}>\cos x \\
& =\frac{1}{D+3 D^{\prime}} \int(C-2 x) \cos x d x \\
& \left\{\begin{array}{l}
\because \text { Hen } \\
y_{1}^{2}=2 \\
y=m x+c
\end{array}\right. \\
& =\frac{1}{\Delta+3 D^{\prime}}\left[(c-2 x) \sin x-\int(-2) \sin x d x\right][y=-2 x+c \\
& =\frac{1}{D+3 D^{\prime}}\left[\begin{array}{r}
{[(y+2 x-2 x) \sin x-2 \cos x]} \\
\text { Reptae }
\end{array}\right. \\
& \text { Replace } c=y+2 x \\
& =\frac{1}{D+3 D^{\prime}}[y \sin x-2 \cos x]
\end{aligned}
$$

Q. 8 a. State and prove BAYE'S theorem.
(8)

Answer: \qquad
Statement:- If $E_{1}, E_{2}, E_{3} \ldots E_{n}$ are
mutually exehisive and exhaustive events with $P\left(E_{i}\right) \neq 0,(i=1,2,3 \ldots n)$ of a random experiment then for any anbitrany event A of the sample spare of the above experi -sent with $P(A)>0$, we have

$$
P\left(E_{i} / A\right)=\frac{P\left(E_{i}\right) P\left(A / E_{i}\right)}{\sum_{i=1}^{n} P\left(E_{i}\right) P\left(A / E_{i}\right)}
$$

Proof: Let s be the sample space of the random experiment and the events E_{1}, $E_{2}, E_{3} \ldots E_{n}$ being exhaustive, then

$$
\begin{aligned}
S & =E_{1} \cup E_{2} \cup E_{3} \cup \cup E_{n} \\
\therefore A & =A \cap S \\
& =A \cap\left(E_{1} \cup E_{2} \cup E_{3} \cup \cdots \subset S\right) \\
& \left.=\left(A \cap E_{1}\right) \cup\left(A \cap E_{2}\right) \cup \cdots\right)
\end{aligned}
$$

By disfributzue Law
The probability P is given by

$$
\begin{align*}
P(A) & =P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\cdots+P\left(A \cap E_{n}\right) \\
& =P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) P\left(A \mid E_{2}\right)+\ldots \\
& =\sum_{i=1}^{n} P\left(E_{i}\right) P\left(A \mid E_{i}\right)+P\left(E_{n}\right) P\left(A \mid E_{n}\right)
\end{align*}
$$

How $P\left(A \cap E_{i}\right)=P(A) P\left(E_{i} / A\right)$

$$
\begin{aligned}
\therefore P\left(E_{i} \mid A\right) & =\frac{P\left(A \cap E_{i}\right)}{P(A)} \\
& =\frac{P\left(E_{i}\right) P\left(A \mid E_{i}\right)}{\sum_{i=1}^{n} P\left(E_{i}\right) P\left(A \mid E_{i}\right)}, \text { using (A) }
\end{aligned}
$$

Hence

$$
P\left(E_{i} / A\right)=\frac{P\left(E_{i}\right) P\left(A / E_{i}\right)}{\sum_{i-1}^{n} P\left(E_{i}\right) P\left(A / E_{i}\right)}
$$

b. A can hit a target 4 times in 5 shots, B 3 times in 4 shots, C twice in 3 shots. They fire a volley. What is the probability that at least two shots hit? (8)

Answer:
Probability of A 's hitting the tangent $=\frac{4}{5}$
Probability of C's hitting the target $=\frac{2}{3}$
For at least two hits
(i) A, B, C all hit the tanget, the probability for which is

(ii) A, hit the target and misses it, the probability for which is

$$
\frac{4}{5} \times \frac{3}{4} \times\left(1-\frac{2}{3}\right)=\frac{4}{5} \times \frac{3}{4} \times \frac{1}{3}=\frac{12}{60}
$$

iii) A, C hit the target and B misses it, the Prob for which is

$$
\frac{4}{5} \times\left(1-\frac{3}{4}\right) \times \frac{2}{3}=\frac{4}{5} \times \frac{1}{4} \times \frac{2}{3}=\frac{8}{60}
$$

(iv) B, C hit the target and A misses it, the probability for mich is

$$
\left(1-\frac{4}{5}\right) \times \frac{3}{4} \times \frac{2}{3}=\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3}=\frac{6}{60}
$$

Q. 9 a. Out of 800 families with 4 children each, how many families would be expected to have (i) 2 boys and 2 girls
(ii) At least one boy
(iii) No girl
(iv) At most two girls?

Assume equal probability for boys and girls
Solution $9(\mathrm{a})$.
Let p and q be the probability of having boys and girls
Since, the probability for boys and girls are equal i.e.

$$
\mathrm{P}=\mathrm{q}=\frac{1}{2}
$$

Here, $\mathrm{n}=4$ and $\mathrm{N}=800$, the binomial distribution is

$$
800\left(\frac{1}{2}+\frac{1}{2}\right)^{4}
$$

(i). the expected number of families having 2 boys and 2 girls

$$
=800{ }^{4} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}=800 \times 6 \times \frac{1}{16}=300
$$

(ii). the expected number of families having at least one boy

$$
\begin{aligned}
& =800\left[{ }^{4} C_{1}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)+{ }^{4} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}+{ }^{4} C_{3}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{3}+{ }^{4} C_{4}\left(\frac{1}{2}\right)^{4}\right] \\
& =800 \times \frac{1}{16}[4+6+4+1]=750
\end{aligned}
$$

(iii). the expected number of families having no girl i.e. having 4 boys

$$
=800\left[{ }^{4} C_{4}\left(\frac{1}{2}\right)^{4}\right]=800 \times \frac{1}{16} \times 1=50
$$

(iv). the expected number of families having at most two girls i.e. having at least 2 boys

$$
\begin{aligned}
& =800\left[{ }^{4} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}+{ }^{4} C_{3}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{3}+{ }^{4} C_{3}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{3}+{ }^{4} C_{4}\left(\frac{1}{2}\right)^{4}\right] \\
& =800 \times \frac{1}{16}[6+4+1]=550
\end{aligned}
$$

b. If there are 3 misprints in a book of 1000 pages find the probability that a given page will contain
(i) no misprint
(ii) more than 2 misprints

Solution (b). Here, total number of pages $=1000$
No of misprints are 3
Let the probability of misprints be p, then $p=\frac{3}{1000}=0.003$

$$
\text { Let } \mathrm{n}=1 \text {, then } \mathrm{m}=\mathrm{np}=1 \times 0.003=0.003
$$

Now, Poisson distribution for ' r ' outcome is

$$
\begin{equation*}
\mathrm{P}(\mathrm{r})=\frac{e^{-m} m^{r}}{r!} \tag{i}
\end{equation*}
$$

(i). no misprint i.e. $r=0$, putting the value of r in equation (i), then

$$
\mathrm{P}(0)=\frac{e^{-m} m^{0}}{0!} \quad \text { i.e. } \quad \frac{e^{-m}}{1} \text {, here } \mathrm{m}=0.003 \text {, then } e^{-(0.003)}=0.997
$$

Hence the probability that a page will not contain with no error is 0.997
(ii). more than two misprints i.e. $r>2$, i.e. $r=3$, putting the value of r in equation (i), then

$$
P(3)=\frac{e^{-m} m^{3}}{3!} \quad \text { i.e. } \quad \frac{e^{-(0.003)}(0.003)^{3}}{3!}=0.0000000045
$$

Hence the probability that a page will not contain more then two error is 0.0000000045

TEXT BOOK

I. Higher Engineering Mathematics -Dr. B.S.Grewal, 41st Edition 2007, Khanna Publishers, Delhi.

