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Q.2  a. List and discuss two potentially negative effects on society of the 
development of Artificial Intelligence Technique. 

 

Answer:   

 
Q.2  b. Write down four applications of Artificial Intelligence. 
 
Answer:   Refer Pages 9-13 of Text Book-I 
 
 
Q.2  c. The philosopher, Searle uses the experiment of Chinese room to 

demonstrate that the machine does not understand.  Explain the experiment 
and Chinese room. 

 
Answer:   Refer Page 8 of Text Book-I 
 
 
Q.3a. Convert the following sentences into classical form: 
   (i)     Whoever can read is literate. 
   (ii)    Dolphins are not literate. 
   (iii)   Some Dolphins are intelligent. 
   Prove that: Some who are intelligent cannot read. (8) 

 
Answer:   Refer Page 42 of Reference-I 
 
  b. What is resolution?  Explain SLD resolution technique used in PROLOG.  

Use suitable example.   (8) 
 
Answer:   Refer Page 43 of Reference-I 
 
Q.4  a. Write down stages of knowledge acquisition. (8) 
 
  b. Explain principles of semantic networks.  Make semantic network of 

following statements: 
 
   Tom is a ginger coloured cat owned by John.  Tom caught a bird. 
 
Answer: 
Semantic Nets Semantic networks are an alternative to predicate logic as a form of knowledge 
representation. The idea is that we can store our knowledge in the form of a graph, with nodes 
representing objects in the world, and arcs representing relationships between those objects. 
For  
example, the following  
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is intended to represent the data: 
Tom is a cat.  
Tom caught a bird. 
 Tom is owned by John.  
Tom is ginger in colour.  
Cats like cream.  
The cat sat on the mat.  
A cat is a mammal.  
A bird is an animal.  
All mammals are animals.  
Mammals have fur.  
It is argued that this form of representation is closer to the way humans structure knowledge 
by building mental links between things than the predicate logic we considered earlier. Note in 
particular how all the information about a particular object is concentrated on the node 
representing that object, rather than scattered around several clauses in logic. There is, 
however, some confusion here which stems from the imprecise nature of semantic nets. A 
particular problem is that we haven’t distinguished between nodes representing classes of 
things, and nodes representing individual objects. So, for example, the node labelled Cat 
represents both the single (nameless) cat who sat on the mat, and the whole class of cats to 
which Tom belongs,which are mammals and which like cream. The is_a link has two different 
meanings – it can mean that one object is an individual item from a class, for example Tom is 
a member of the class of cats, or that one class is a subset of another, for example, the class of 
cats is a subset of the class of mammals. This confusion does not occur in logic, where the use 
of quantifiers, names and predicates makes it clear what we mean so: 
 Tom is a cat is represented by Cat(Tom)  
The cat sat on the mat is represented by  ∃x∃y(Cat(x)∧Mat(y)∧SatOn(x,y))  
A cat is a mammal is represented by  ∀x(Cat(X)→Mammal(x))  
We can clean up the representation by distinguishing between nodes representing individual or 
instances, and nodes representing classes. The is_a link will only be used to show an 
individual belonging to a class. The link representing one class being a subset of another will 
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be labelled a_kind_of, or ako for short. The names instance and subclass are often used in the 
place of is_a and ako, but we will use these terms with a slightly different meaning in the 
section on Frames below. Note also the modification which causes the link labelled 
is_owned_by to be reversed in direction. This is in order to avoid links representing passive 
relationships. In general a passive sentence can be replaced by an active one, so “Tom is 
owned by John” becomes “John owns Tom”. In general the rule which converts passive to 
active in English converts sentences of the form “X is Yed by Z” to “Z Ys X”. This is just an 
example (though often used for illustration) of the much more general principle of looking 
beyond the immediate surface structure of a sentence to find its deep structure. The revised 
semantic net is: 

 
Note that where we had an unnamed member of some class, we have had to introduce a node 
with an invented name to represent a particular member of the class. This is a process similar 
to the Skolemisation we considered previously as a way of dealing with existential quantifiers. 
For example, “Tom caught a bird” would be represented in logic by 
∃x(bird(x)∧caught(Tom,x)), which would be Skolemised by replacing the x with a Skolem 
constant; the same thing was done above where bird1 was the name given to the individual 
bird that Tom caught. There are still plenty of issues to be resolved if we really want to 
represent what is meant by the English phrases, or to be really clear about what the semantic 
net means, but we are getting towards a notation that can be used practically (one example of a 
thing we have skated over is how to deal 
with mass nouns like “fur” or “cream” which refer to things that come in amounts rather than 
individual objects)     
 
 
 Q.5  a. Explain Hybrid representation systems. (8) 
 
Answer: 
A hybrid KR system is an implementation of a hybrid KR formalism consisting of two or more 
different sub formalisms. These sub formalism should be integrated through (i) a 
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representational theory, which explains what knowledge is to be-represented by what 
formalism, and (ii) a common semantics for the overall formalism, explaining in a semantic 
sound manner the relationship between expressions of different sub formalisms.The 
generalized architecture for a hybrid system is given in Fig 

 
In general these systems consist of two different kinds of knowledge: The terminological 
knowledge, consisting of a set of concepts and roles defining a terminology, and the 
assertional knowledge, consisting of some logical formalism suited to represent general 
assertions. 
 
 
KRYPTON 
The system consists of two modules: the Terminological Box and the Assertional Box. The 
terminological box, or module, is based on the KL-ONE language -a representation system 
based on semantic networks and frames. The KRYPTON has been developed mainly from the 
work of KL-ONE. The difficulties in representing assertional knowledge using KL-ONE gives 
the idea of the integration of a theorem-prover and a KL-ONE-like language into a hybrid 
system. It is basically like a “tell-ask” module. 
The most important feature introduced by KRYPTON is the notion of a Functional Approach 
to knowledge representation : KRYPTON is provided with a clear, implementation 
independent, description of what services are provided to the user. This Knowledge Level 
description is presented in the form of a formal definition of the syntax and semantics of the 
languages provided by the two modules along with the interaction between these two modules. 
The set of primitives of the KRYPTON language vary from one presentation to another 
presentation of the language. In the complete form, the terminological box includes primitives 
for: Concept conjunction, value and number restriction on concepts, primitive sub-concept, 
concept decomposition, role differentiation, role chain, primitive subrole and role 
decomposition. And the assertional box provides a complete first-order logic language 
including the usual operators: Not, and, or, exists and for all. 
 
KANDOR 
The basic units of KANDOR are individuals and frames. Individuals are associated to objects 
in the real world and frames are associated to sets of these individuals. These units are 
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manipulated through the standard representational structures of frames, slots, restrictions, and 
slot fillers common to most frame-based systems. Each slot maps individuals into sets of 
values, called slot fillers, Elements of these sets can be other individuals, strings, or numbers. 
Frames in KANDOR have no assertion import; they look simply as descriptions of some set of 
individuals. There are two types of frames: Primitive and defined. To be an instance of a 
primitive frame, an individual must be explicitly specified as an instance of the frame when it 
is created. 
To be an instance of a defined frame an individual must satisfy the conditions associated to the 
frame definition. There two types of conditions: Super-frames and restrictions. A super-frame 
is just another frame, and a restriction is a condition on a set of slots fillers for some slot. An 
individual satisfies the restriction if its slots fillers for that slot satisfy the condition. 
KANDOR provides two main operations that require inferences to be made: Given an 
individual and a frame, determine whether the individual is an instance of the frame, arid, 
given two frames, it determines whether one frame is subset of another frame. 
KANDOR has been used as the knowledge representation component of ARGON , which is an 
interactive information retrieval system which is designed to be used by non experts for 
retrieval purpose over a large, heterogeneous knowledge bases, possibly taken from a large 
number of sources or repositories. 
 
BACK 
The structure of a BACK represents as the same structure of KRYPTON, which contains an 
terminological box and an assertional box. One main aspect in the BACK implementation is 
the Balancedness of the formalisms involved. Although the fact that the reasoning in hybrid 
systems is frequently incomplete (because of efficiency requirements) sometimes leads to 
situations where one formalism allows to express something which obviously should have 
some impact on another formalism according to the semantics of the system, the 
incompleteness of the reasoning precludes this impact to be realized by the system. The 
formalisms of this type of systems are said to be “unbalanced”. 
The main criteria taken into account in the development of the BACK system are the 
following: (i) The sub formalisms of the system should be balanced, (ii) the formalism should 
permit tractable inference algorithms covering almost all possible inferences, (iii) the 
assertional box formalism should be able to represent incomplete knowledge in a limited 
manner, (iv) the system should allow for extending the knowledge base incrementally 
(retractions are not considered) and (v) the system should reject assertional box entries which 
are inconsistent. The terminological language of BACK is more powerful than that of 
KRYPTON. 
 
KL-TWO 
The KL-TWO system is composed by two sub formalisms: PENNI, a modified version of the 
RUP (Reasoning Utility Package) system) and NIKL (New implementation of KL-ONE), a 
terminological reasoner in the KL-ONE [7] tradition. These two formalisms are 
complementary: PENNI is able to represent propositional assertions without any quantification 
and NIKL allows the representation of a simple class of universally quantified sentences. 
These sentences can be applied in PENNI to extend its propositional language with a limited 
form of quantification 
The PENNI formalism consists of a database of propositional assertions, more specifically, a 
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data base of ground sentences of first-order logic without quantifiers. This database permits 
incremental assertions and retractions. Underlying the deductive mechanism of PENNI is a 
Truth Maintenance System (TMS) allowing all the useful operations that have been associated 
with such systems. 
And the NIKL terminological reasoner allows the definition of composite concepts and roles 
through the use of structuring primitives and primitive concepts and roles. The primitives 
available in NIKL include: Concept conjunction, statement of the minimal number of role 
fillers, concept value restriction and role differentiation. The inference provided by NIKL is 
basically the sub assumption relation between concepts. It has been proved recently that the 
subsumption problem in NIKL is undecidable. 
Two forms of hybrid reasoning are performed by the KL-TWO system: The forward 
reasoning, which is used to classify new assertions according to the concepts already defined 
in the NIKL knowledge base, and the backward reasoning, used to answer queries. Both 
mechanisms combine the inferences mechanism of PENNI and NIKL to perform their tasks 
 
CAKE 
The CAKE system was developed as a knowledge representation and reasoning facility for the 
Programmer's Apprentice project different from the previously presented hybrid systems. 
CAKE does not present complementary representation formalisms in which different types of 
knowledge are represented, but it uses its two formalisms to represent the same knowledge. 
The two formalisms present in CAKE are: A predicate calculus package which is based on the 
RUP (Reasoning Utility Package) system and a specialized, semantic network like formalism 
which is used to represent the structure of programs. This last formalism, called Plan Diagrams 
or simply Plans, was developed without any special concern about formal semantics but was 
only designed to fit the requirements of the program representation problem. 
The current architecture of CAKE consists of eight layers: The bottom five layers forming the 
predicate calculus level and the top three layers corresponding to the Plan level. The predicate 
calculus layers, from bottom to top, and their functions are the following: (i) Truth 
Maintenance, unit propositional resolution, retraction and explanation, (ii) Equality, 
uniqueness of terms, congruence closure, (iii) Demons, pattern directed invocation, priority 
queues, (iv) Algebraic, commutativity, associativity, etc, lattices, Boolean algebras, (v) Types, 
type inheritance and functionality. The Plan layers are the following: (i) Plan Calculus, data 
and control flow graphs, abstract data types, (ii) Plan Recognition, flow graph parsing and 
recognition heuristics, (iii) Plan Synthesis, search of refinement space and synthesis heuristics. 
 
 
  b. Explain Dempster and Shafer’s theory of evidences in detail.  
 
Answer: 
The Dempster–Shafer theory (DST) is a mathematical theory of evidence. It allows one to 
combine evidence from different sources and arrive at a degree of belief (represented by a 
belief function) that takes into account all the available evidence. The theory was first 
developed by Arthur P. Dempster and Glenn Shafer. 
 
Dempster–Shafer theory is a generalization of the Bayesian theory of subjective probability; 
whereas the latter requires probabilities for each question of interest, belief functions base 

http://en.wikipedia.org/wiki/Evidence
http://en.wikipedia.org/wiki/Arthur_P._Dempster
http://en.wikipedia.org/wiki/Glenn_Shafer
http://en.wikipedia.org/wiki/Bayesian_probability
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degrees of belief (or confidence, or trust) for one question on the probabilities for a related 
question. These degrees of belief may or may not have the mathematical properties of 
probabilities; how much they differ depends on how closely the two questions are related.[5] 
Put another way, it is a way of representing epistemic plausibilities but it can yield answers 
that contradict those arrived at using probability theory. 
 
Often used as a method of sensor fusion, Dempster–Shafer theory is based on two ideas: 
obtaining degrees of belief for one question from subjective probabilities for a related 
question, and Dempster's rule[6] for combining such degrees of belief when they are based on 
independent items of evidence. In essence, the degree of belief in a proposition depends 
primarily upon the number of answers (to the related questions) containing the proposition, 
and the subjective probability of each answer. Also contributing are the rules of combination 
that reflect general assumptions about the data. 
 
In this formalism a degree of belief (also referred to as a mass) is represented as a belief 
function rather than a Bayesian probability distribution. Probability values are assigned to sets 
of possibilities rather than single events: their appeal rests on the fact they naturally encode 
evidence in favor of propositions. 
Dempster–Shafer theory assigns its masses to all of the non-empty subsets of the entities that 
compose a system 

Formal definition 

Let X be the universal set: the set representing all possible states of a system under 
consideration. The power set 

 

is the set of all subsets of X, including the empty set . For example, if: 

 

then 

 

The elements of the power set can be taken to represent propositions concerning the actual 
state of the system, by containing all and only the states in which the proposition is true. 

The theory of evidence assigns a belief mass to each element of the power set. Formally, a 
function 

 

http://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory#cite_note-SH02-5
http://en.wikipedia.org/wiki/Epistemology
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Sensor_fusion
http://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory#cite_note-DE68-6
http://en.wikipedia.org/wiki/Bayesianism
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Universal_set
http://en.wikipedia.org/wiki/Power_set
http://en.wikipedia.org/wiki/Empty_set
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is called a basic belief assignment (BBA), when it has two properties. First, the mass of the 
empty set is zero: 

 

Second, the masses of the remaining members of the power set add up to a total of 1: 

 

The mass m(A) of A, a given member of the power set, expresses the proportion of all relevant 
and available evidence that supports the claim that the actual state belongs to A but to no 
particular subset of A. The value of m(A) pertains only to the set A and makes no additional 
claims about any subsets of A, each of which have, by definition, their own mass. 

From the mass assignments, the upper and lower bounds of a probability interval can be 
defined. This interval contains the precise probability of a set of interest (in the classical 
sense), and is bounded by two non-additive continuous measures called belief (or support) 
and plausibility: 

 

The belief bel(A) for a set A is defined as the sum of all the masses of subsets of the set of 
interest: 

 

The plausibility pl(A) is the sum of all the masses of the sets B that intersect the set of interest 
A: 

 

The two measures are related to each other as follows: 

 

And conversely, for finite A, given the belief measure bel(B) for all subsets B of A, we can find 
the masses m(A) with the following inverse function: 
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where |A − B| is the difference of the cardinalities of the two sets.  

It follows from the last two equations that, for a finite set X, you need know only one of the 
three (mass, belief, or plausibility) to deduce the other two; though you may need to know the 
values for many sets in order to calculate one of the other values for a particular set. In the case 
of an infinite X, there can be well-defined belief and plausibility functions but no well-defined 
mass function.  

 Q.6 a. Explain heuristics Search techniques.  How are these techniques different 
from blind search techniques?  (8) 

 
Answer: 
 
 
 Q.6  b. Explain briefly Breadth first search and depth first search techniques. 

Write algorithm also.   (8) 
 
Answer: 
Breadth-first : first, check all nodes on the same depth. In other words, visit all the nearest 
neighbours of the current root nodes; then move to the next depth level by considering the new 
visited nodes as the root nodes. 
 
Depth-first : First, check all nodes in the same branch. In other words, visit each neighbour of 
the most recently visited node. 
 
Consider the following graph: 
 

 
 
Starting at root node 1, give the order in which the nodes will be 
visited by the breadth-first and depth-first algorithms. 
Answer: 
Breadth-first : 1 - 2 - 3 - 4 - 5 - 6 

Depth-first : 1 - 2 - 4 - 5 - 3 - 6 

Breadth First Search  

Breadth first search traverses a graph in what is sometime called level order.  Intuitively it 

http://en.wikipedia.org/wiki/Logical_consequence
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starts at the source node and visits all the nodes directly connected to the source.  We call these 
level 1 nodes. Then it visits all the unvisited nodes connected to level 1 nodes, and calls these 
level 2 nodes etc. 

The simple way to implement breadth first search is using a queue.  In fact when hear you 
breadth you should think queue, and when you hear depth you should think stack.  We have 
the algorithm output a tree representing the breadth first search, and store the level of each 
node.  We have a parent array to store the search tree, a Level array to store the level, and a 
visited array to remember who has already been placed on the queue    

 Initialize:   Queue Q = source;  level[source] = 0, p[source] = nil;   

For all nodes x do visited[x] = false;   

visited[source]= true; 

  

 Loop:  While Q is not empty do { 

   x = deleteq(Q);   

   for all y adjacent to x do if visited[y] = false { 

    visited[y]=true; level[y]=level[x]+1; p[y] = x; addq(Q, y)} 

  }  

The total time for initializing is O(n) and the total time for the queuing operations is O(n) 
because each node is put on the queue exactly once.  The total time in the main loop is O(e) 
because we look at each edge at most twice, once from each direction.  This gives a time 
complexity of O(n+e). 

 Depth First Search 

 Depth first search (DFS) traverses a graph by going as deeply as possible before backtracking.  
It is surprisingly rich with potential for other algorithms.  It also returns a search tree.  It does 
not return the level of each node, but can return a numbering of the nodes in the order that they 
were visited.  We first show a depth first search skeleton and define the different kinds classes 
of edges.  Then we show how to augment the skeleton to solve two very basic algorithms: 
topological sorting, connected components.  Each of leverages the power of DFS at a different 
location in the skeleton.  We conclude with a sophisticated use of DFS that finds strongly 
connected components of a directed graph.  You may recall that in month 0 we discussed a 
method in linear algebra using matrix multiplication that solved this algorithm in O(n^3).  Our 
method will work in O(n+e)  
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 Depth First Search Skeleton 

 DFS(G, s) 

 Mark s visited; Dfsnum[s] = count; count++; //count is a global counter initialized to 
1. 

/* Process s – previsit stage */ 
Recursive Loop:  For every y adjacent to s do 
   If y is unvisited then {DFS(G, y); parent[y] = x;} else… 

/* process edges {s,y}*/; 
/* Process s – postvisit stage */ 
Mark s finished 

 
 
 
 Q.7   a.  Write down the comparisons between conventional computers and neural 

networks.  (8) 
 
Answer: 
Comparison between conventional computers and neural networks 
 
(1.) Parallel processing 
One of the major advantages of the neural network is its ability to do many things at once. 
With traditional computers, processing is sequential--one task, then the next, then the next, and 
so on. The idea of threading makes it appear to the human user that many things are happening 
at one time. For instance, the Netscape throbber is shooting meteors at the same time that the 
page is loading. However, this is only an appearance; processes are not actually happening 
simultaneously. 
The artificial neural network is an inherently multiprocessor-friendly architecture. Without 
much modification, it goes beyond one or even two processors of the von Neumann 
architecture. The artificial neural network is designed from the onset to be parallel. Humans 
can listen to music at the same time they do their homework--at least, that's what we try to 
convince our parents in high school. With a massively parallel architecture, the neural network 
can accomplish a lot in less time. The tradeoff is that processors have to be specifically 
designed for the neural network. 
 
(2.) The ways in which they function 
Another fundamental difference between traditional computers and artificial neural networks is 
the way in which they function. While computers function logically with a set of rules and 
calculations, artificial neural networks can function via images, pictures, and concepts. 
Based upon the way they function, traditional computers have to learn by rules, while artificial 
neural networks learn by example, by doing something and then learning from it. Because of 
these fundamental differences, the applications to which we can tailor them are extremely 
different. We will explore some of the applications later in the presentation. 
 
(3.) Self-programming 
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The "connections" or concepts learned by each type of architecture is different as well. The 
von Neumann computers are programmable by higher level languages like C or Java and then 
translating that down to the machine's assembly language. Because of their style of learning, 
artificial neural networks can, in essence, "program themselves." While the conventional 
computers must learn only by doing different sequences or steps in an algorithm, neural 
networks are continuously adaptable by truly altering their own programming. It could be said 
that conventional computers are limited by their parts, while neural networks can work to 
become more than the sum of their parts. 
 
(4.) Speed 
The speed of each computer is dependant upon different aspects of the processor. Von 
Neumann machines requires either big processors or the tedious, error-prone idea of parallel 
processors, while neural networks requires the use of multiple chips customly built for the 
application. 
 
 
  b. Explain working of inference engine in an expert system using suitable 

examples.  (8) 
 
Answer: 
 
Inference Engine 
The inference engine is the main processing element of the expert system. The inference 
engine chooses rules from the agenda to fire. If there are no rules on the agenda, the inference 
engine must obtain information from the user in order to add more rules to the agenda. It 
makes use of knowledge base, in order to draw conclusions for situations. It is responsible for 
gathering the information from the user, by asking various questions and applying it wherever 
necessary. 
 
Working of Inference Engine 
The inference engine can be described as a form of finite state machine with a cycle consisting 
of three action states: match rules, select rules, and execute rules. Rules are represented in the 
system by a notation called predicate logic. 
 
In the first state, match rules, the inference engine finds all of the rules that are satisfied by the 
current contents of the data store. When rules are in the typical condition-action form, this 
means testing the conditions against the working memory. The rule matchings that are found 
are all candidates for execution: they are collectively referred to as the conflict set. Note that 
the same rule may appear several times in the conflict set if it matches different subsets of data 
items. The pair of a rule and a subset of matching data items is called an instantiation of the 
rule. 
 
In many applications, where large volume of data are concerned and/or when performance 
time considerations are critical, the computation of the conflict set is a non-trivial problem. 
Earlier research work on inference engines focused on better algorithms for matching rules to 



AC/AT74    ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014 
 

© IETE                                                                                                                                 13 

data. The Rete algorithm, developed by Charles Forgy, is an example of such a matching 
algorithm; it was used in the OPS series of production system languages. Daniel P. Miranker 
later improved on Rete with another algorithm, TREAT, which combined it with optimization 
techniques derived from relational database systems. 
 
The inference engine then passes along the conflict set to the second state, select rules. In this 
state, the inference engine applies some selection strategy to determine which rules will 
actually be executed. The selection strategy can be hard-coded into the engine or may be 
specified as part of the model. In the larger context of AI, these selection strategies are often 
referred to as heuristics following Allen Newell's Unified theory of cognition. 
 
In OPS5, for instance, a choice of two conflict resolution strategies is presented to the 
programmer. The LEX strategy orders instantiations on the basis of recency of the time tags 
attached to their data items. Instantiations with data items having recently matched rules in 
previous cycles are considered with higher priority. Within this ordering, instantiations are 
further sorted on the complexity of the conditions in the rule. The other strategy, MEA, puts 
special emphasis on the recency of working memory elements that match the first condition of 
the rule. (The latter heuristic is heavily used in means-ends analysis.) 
 
Finally the selected instantiations are passed over to the third state, execute rules. The 
inference engine executes or fires the selected rules, with the instantiation's data items as 
parameters. Usually the actions in the right-hand side of a rule change the data store, but they 
may also trigger further processing outside of the inference engine (interacting with users 
through a graphical user interface or calling local or remote programs, for instance). Since the 
data store is usually updated by firing rules, a different set of rules will match during the next 
cycle after these actions are performed. 
 
The inference engine then cycles back to the first state and is ready to start  
ver again. This control mechanism is referred to as the recognize-act cycle. The inference 
engine stops either on a given number of cycles, controlled by the operator, or on a quiescent 
state of the data store when no rules match the data. 
 
General Types of Inferencing: 
In simple rule-based systems, there are two kinds of inference, forward chaining and 
backward chaining.  
Forward chaining: data gets put into working memory. This triggers rules whose conditions 
match the new data. These rules then perform their actions. The actions may add new data to 
memory, thus triggering more rules. And so on. This is also called data-directed inference, 
because inference is triggered by the arrival of new data in working memory.  
Backward chaining: the system needs to know the value of a piece of data. It searches for rules 
whose conclusions mention this data. Before it can use the rules, it must test their conditions. 
This may entail discovering the value of more pieces of data, and so on. This is also called 
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goal-directed inference, or hypothesis driven, because inferences are not performed until the 
system is made to prove a particular goal (i.e. a question).  
 
 
 
 
 Q.8   a. Differentiate between neural networks and expert system.  (8) 
 
Answer: 

CHARACTERIS
TICS 

TRADITIONAL 
COMPUTING 
(including Expert 
Systems) 

ARTIFICIAL 
NEURAL 
NETWORKS 

Processing style 
Functions 

Sequential 
Logically (left brained) 
via Rules Concepts 
Calculations 

Parallel  
Gestault (right 
brained) 
via Images 
Pictures 
Controls  

Learning Method 
Applications 

by rules (didactically) 
Accounting 
word processing 
math inventory 
digital communications  

by example 
(Socratically) 
Sensor processing 
speech recognition 
pattern recognition 
text recognition  

 
Table 1 Comparison of Computing Approaches 

Characteristics 

Von Neumann 
Architecture 
Used for Expert 
Systems 

Artificial Neural 
Networks 

Processors 
VLSI 
(traditional 
processors) 

Artificial Neural 
Networks;  
variety of technologies; 
hardware development 
is on going  

Processing 
Approach Separate  The same  

Processing Processes problem Multiple, 
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Approach rule at a one  
time; sequential 

simultaneously 

Connections Externally 
programmable  

Dynamically self 
programming  

Self learning  Only algorithmic 
parameters modified  Continuously adaptable  

Fault tolerance  None without 
special processors  

Significant in the 
very nature of the  
interconnected neurons  

Neurobiology 
in design  None  Moderate  

Programming  Through a rule based 
complicated 

Self-programming; 
but network must be 
set up properly 

Ability to be fast  Requires big 
processors 

Requires multiple  
custom-built chips 

Table 2 Comparisons of Expert Systems and Neural Networks. 

Q.8  b. What are the advantages and disadvantages of Neural network computing?  
 
Answer: 
 
Advantages: 

• A neural network can perform tasks that a linear program cannot. 
• When an element of the neural network fails, it can continue without any problem by 

their parallel nature. 
• A neural network learns and does not need to be reprogrammed. 
• It can be implemented in any application and without any problem. 
• Does not use pre-programmed knowledge base 
• Suited to analyze complex pattern 
• Have no restrictive assumptions 
• Allows for qualitative data 
• Can handle noisy data 
• Can overcome autocorrelation 
• User-friendly: clear output, and robust and flexible 

 
Disadvantages: 

• The neural network needs training to operate. 
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• The architecture of a neural network is different from the architecture of 
microprocessors therefore needs to be emulated. 

• Requires high processing time for large neural networks. 
• The neural network requires high quality data, 
• Variables must be carefully selected a priori, 
• Risk of overfitting, 
• Requires a definition of architecture, 
• Long processing time, 
• Possibility of illogical network behavior, and 
• Large training sample required 

 
 
 Q.9 a. Explain how AI can be used in solving Real-World problems and in 

enhancing scalability.                                                                  
 
Answer: Page 270 of Reference-I 
 
 
 Q.9 b.  What do you mean by multi-agent systems (MAS)?  Why are these 

successful? 
 
Answer: Page 278 of Reference-I 
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