
AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 1

Q.2 a. List and discuss two potentially negative effects on society of the
development of Artificial Intelligence Technique.

Answer:

Q.2 b. Write down four applications of Artificial Intelligence.

Answer: Refer Pages 9-13 of Text Book-I

Q.2 c. The philosopher, Searle uses the experiment of Chinese room to

demonstrate that the machine does not understand. Explain the experiment
and Chinese room.

Answer: Refer Page 8 of Text Book-I

Q.3a. Convert the following sentences into classical form:
 (i) Whoever can read is literate.
 (ii) Dolphins are not literate.
 (iii) Some Dolphins are intelligent.
 Prove that: Some who are intelligent cannot read. (8)

Answer: Refer Page 42 of Reference-I

 b. What is resolution? Explain SLD resolution technique used in PROLOG.

Use suitable example. (8)

Answer: Refer Page 43 of Reference-I

Q.4 a. Write down stages of knowledge acquisition. (8)

 b. Explain principles of semantic networks. Make semantic network of

following statements:

 Tom is a ginger coloured cat owned by John. Tom caught a bird.

Answer:
Semantic Nets Semantic networks are an alternative to predicate logic as a form of knowledge
representation. The idea is that we can store our knowledge in the form of a graph, with nodes
representing objects in the world, and arcs representing relationships between those objects.
For
example, the following

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 2

is intended to represent the data:
Tom is a cat.
Tom caught a bird.
 Tom is owned by John.
Tom is ginger in colour.
Cats like cream.
The cat sat on the mat.
A cat is a mammal.
A bird is an animal.
All mammals are animals.
Mammals have fur.
It is argued that this form of representation is closer to the way humans structure knowledge
by building mental links between things than the predicate logic we considered earlier. Note in
particular how all the information about a particular object is concentrated on the node
representing that object, rather than scattered around several clauses in logic. There is,
however, some confusion here which stems from the imprecise nature of semantic nets. A
particular problem is that we haven’t distinguished between nodes representing classes of
things, and nodes representing individual objects. So, for example, the node labelled Cat
represents both the single (nameless) cat who sat on the mat, and the whole class of cats to
which Tom belongs,which are mammals and which like cream. The is_a link has two different
meanings – it can mean that one object is an individual item from a class, for example Tom is
a member of the class of cats, or that one class is a subset of another, for example, the class of
cats is a subset of the class of mammals. This confusion does not occur in logic, where the use
of quantifiers, names and predicates makes it clear what we mean so:
 Tom is a cat is represented by Cat(Tom)
The cat sat on the mat is represented by ∃x∃y(Cat(x)∧Mat(y)∧SatOn(x,y))
A cat is a mammal is represented by ∀x(Cat(X)→Mammal(x))
We can clean up the representation by distinguishing between nodes representing individual or
instances, and nodes representing classes. The is_a link will only be used to show an
individual belonging to a class. The link representing one class being a subset of another will

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 3

be labelled a_kind_of, or ako for short. The names instance and subclass are often used in the
place of is_a and ako, but we will use these terms with a slightly different meaning in the
section on Frames below. Note also the modification which causes the link labelled
is_owned_by to be reversed in direction. This is in order to avoid links representing passive
relationships. In general a passive sentence can be replaced by an active one, so “Tom is
owned by John” becomes “John owns Tom”. In general the rule which converts passive to
active in English converts sentences of the form “X is Yed by Z” to “Z Ys X”. This is just an
example (though often used for illustration) of the much more general principle of looking
beyond the immediate surface structure of a sentence to find its deep structure. The revised
semantic net is:

Note that where we had an unnamed member of some class, we have had to introduce a node
with an invented name to represent a particular member of the class. This is a process similar
to the Skolemisation we considered previously as a way of dealing with existential quantifiers.
For example, “Tom caught a bird” would be represented in logic by
∃x(bird(x)∧caught(Tom,x)), which would be Skolemised by replacing the x with a Skolem
constant; the same thing was done above where bird1 was the name given to the individual
bird that Tom caught. There are still plenty of issues to be resolved if we really want to
represent what is meant by the English phrases, or to be really clear about what the semantic
net means, but we are getting towards a notation that can be used practically (one example of a
thing we have skated over is how to deal
with mass nouns like “fur” or “cream” which refer to things that come in amounts rather than
individual objects)

 Q.5 a. Explain Hybrid representation systems. (8)

Answer:
A hybrid KR system is an implementation of a hybrid KR formalism consisting of two or more
different sub formalisms. These sub formalism should be integrated through (i) a

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 4

representational theory, which explains what knowledge is to be-represented by what
formalism, and (ii) a common semantics for the overall formalism, explaining in a semantic
sound manner the relationship between expressions of different sub formalisms.The
generalized architecture for a hybrid system is given in Fig

In general these systems consist of two different kinds of knowledge: The terminological
knowledge, consisting of a set of concepts and roles defining a terminology, and the
assertional knowledge, consisting of some logical formalism suited to represent general
assertions.

KRYPTON
The system consists of two modules: the Terminological Box and the Assertional Box. The
terminological box, or module, is based on the KL-ONE language -a representation system
based on semantic networks and frames. The KRYPTON has been developed mainly from the
work of KL-ONE. The difficulties in representing assertional knowledge using KL-ONE gives
the idea of the integration of a theorem-prover and a KL-ONE-like language into a hybrid
system. It is basically like a “tell-ask” module.
The most important feature introduced by KRYPTON is the notion of a Functional Approach
to knowledge representation : KRYPTON is provided with a clear, implementation
independent, description of what services are provided to the user. This Knowledge Level
description is presented in the form of a formal definition of the syntax and semantics of the
languages provided by the two modules along with the interaction between these two modules.
The set of primitives of the KRYPTON language vary from one presentation to another
presentation of the language. In the complete form, the terminological box includes primitives
for: Concept conjunction, value and number restriction on concepts, primitive sub-concept,
concept decomposition, role differentiation, role chain, primitive subrole and role
decomposition. And the assertional box provides a complete first-order logic language
including the usual operators: Not, and, or, exists and for all.

KANDOR
The basic units of KANDOR are individuals and frames. Individuals are associated to objects
in the real world and frames are associated to sets of these individuals. These units are

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 5

manipulated through the standard representational structures of frames, slots, restrictions, and
slot fillers common to most frame-based systems. Each slot maps individuals into sets of
values, called slot fillers, Elements of these sets can be other individuals, strings, or numbers.
Frames in KANDOR have no assertion import; they look simply as descriptions of some set of
individuals. There are two types of frames: Primitive and defined. To be an instance of a
primitive frame, an individual must be explicitly specified as an instance of the frame when it
is created.
To be an instance of a defined frame an individual must satisfy the conditions associated to the
frame definition. There two types of conditions: Super-frames and restrictions. A super-frame
is just another frame, and a restriction is a condition on a set of slots fillers for some slot. An
individual satisfies the restriction if its slots fillers for that slot satisfy the condition.
KANDOR provides two main operations that require inferences to be made: Given an
individual and a frame, determine whether the individual is an instance of the frame, arid,
given two frames, it determines whether one frame is subset of another frame.
KANDOR has been used as the knowledge representation component of ARGON , which is an
interactive information retrieval system which is designed to be used by non experts for
retrieval purpose over a large, heterogeneous knowledge bases, possibly taken from a large
number of sources or repositories.

BACK
The structure of a BACK represents as the same structure of KRYPTON, which contains an
terminological box and an assertional box. One main aspect in the BACK implementation is
the Balancedness of the formalisms involved. Although the fact that the reasoning in hybrid
systems is frequently incomplete (because of efficiency requirements) sometimes leads to
situations where one formalism allows to express something which obviously should have
some impact on another formalism according to the semantics of the system, the
incompleteness of the reasoning precludes this impact to be realized by the system. The
formalisms of this type of systems are said to be “unbalanced”.
The main criteria taken into account in the development of the BACK system are the
following: (i) The sub formalisms of the system should be balanced, (ii) the formalism should
permit tractable inference algorithms covering almost all possible inferences, (iii) the
assertional box formalism should be able to represent incomplete knowledge in a limited
manner, (iv) the system should allow for extending the knowledge base incrementally
(retractions are not considered) and (v) the system should reject assertional box entries which
are inconsistent. The terminological language of BACK is more powerful than that of
KRYPTON.

KL-TWO
The KL-TWO system is composed by two sub formalisms: PENNI, a modified version of the
RUP (Reasoning Utility Package) system) and NIKL (New implementation of KL-ONE), a
terminological reasoner in the KL-ONE [7] tradition. These two formalisms are
complementary: PENNI is able to represent propositional assertions without any quantification
and NIKL allows the representation of a simple class of universally quantified sentences.
These sentences can be applied in PENNI to extend its propositional language with a limited
form of quantification
The PENNI formalism consists of a database of propositional assertions, more specifically, a

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 6

data base of ground sentences of first-order logic without quantifiers. This database permits
incremental assertions and retractions. Underlying the deductive mechanism of PENNI is a
Truth Maintenance System (TMS) allowing all the useful operations that have been associated
with such systems.
And the NIKL terminological reasoner allows the definition of composite concepts and roles
through the use of structuring primitives and primitive concepts and roles. The primitives
available in NIKL include: Concept conjunction, statement of the minimal number of role
fillers, concept value restriction and role differentiation. The inference provided by NIKL is
basically the sub assumption relation between concepts. It has been proved recently that the
subsumption problem in NIKL is undecidable.
Two forms of hybrid reasoning are performed by the KL-TWO system: The forward
reasoning, which is used to classify new assertions according to the concepts already defined
in the NIKL knowledge base, and the backward reasoning, used to answer queries. Both
mechanisms combine the inferences mechanism of PENNI and NIKL to perform their tasks

CAKE
The CAKE system was developed as a knowledge representation and reasoning facility for the
Programmer's Apprentice project different from the previously presented hybrid systems.
CAKE does not present complementary representation formalisms in which different types of
knowledge are represented, but it uses its two formalisms to represent the same knowledge.
The two formalisms present in CAKE are: A predicate calculus package which is based on the
RUP (Reasoning Utility Package) system and a specialized, semantic network like formalism
which is used to represent the structure of programs. This last formalism, called Plan Diagrams
or simply Plans, was developed without any special concern about formal semantics but was
only designed to fit the requirements of the program representation problem.
The current architecture of CAKE consists of eight layers: The bottom five layers forming the
predicate calculus level and the top three layers corresponding to the Plan level. The predicate
calculus layers, from bottom to top, and their functions are the following: (i) Truth
Maintenance, unit propositional resolution, retraction and explanation, (ii) Equality,
uniqueness of terms, congruence closure, (iii) Demons, pattern directed invocation, priority
queues, (iv) Algebraic, commutativity, associativity, etc, lattices, Boolean algebras, (v) Types,
type inheritance and functionality. The Plan layers are the following: (i) Plan Calculus, data
and control flow graphs, abstract data types, (ii) Plan Recognition, flow graph parsing and
recognition heuristics, (iii) Plan Synthesis, search of refinement space and synthesis heuristics.

 b. Explain Dempster and Shafer’s theory of evidences in detail.

Answer:
The Dempster–Shafer theory (DST) is a mathematical theory of evidence. It allows one to
combine evidence from different sources and arrive at a degree of belief (represented by a
belief function) that takes into account all the available evidence. The theory was first
developed by Arthur P. Dempster and Glenn Shafer.

Dempster–Shafer theory is a generalization of the Bayesian theory of subjective probability;
whereas the latter requires probabilities for each question of interest, belief functions base

http://en.wikipedia.org/wiki/Evidence
http://en.wikipedia.org/wiki/Arthur_P._Dempster
http://en.wikipedia.org/wiki/Glenn_Shafer
http://en.wikipedia.org/wiki/Bayesian_probability

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 7

degrees of belief (or confidence, or trust) for one question on the probabilities for a related
question. These degrees of belief may or may not have the mathematical properties of
probabilities; how much they differ depends on how closely the two questions are related.[5]
Put another way, it is a way of representing epistemic plausibilities but it can yield answers
that contradict those arrived at using probability theory.

Often used as a method of sensor fusion, Dempster–Shafer theory is based on two ideas:
obtaining degrees of belief for one question from subjective probabilities for a related
question, and Dempster's rule[6] for combining such degrees of belief when they are based on
independent items of evidence. In essence, the degree of belief in a proposition depends
primarily upon the number of answers (to the related questions) containing the proposition,
and the subjective probability of each answer. Also contributing are the rules of combination
that reflect general assumptions about the data.

In this formalism a degree of belief (also referred to as a mass) is represented as a belief
function rather than a Bayesian probability distribution. Probability values are assigned to sets
of possibilities rather than single events: their appeal rests on the fact they naturally encode
evidence in favor of propositions.
Dempster–Shafer theory assigns its masses to all of the non-empty subsets of the entities that
compose a system

Formal definition

Let X be the universal set: the set representing all possible states of a system under
consideration. The power set

is the set of all subsets of X, including the empty set . For example, if:

then

The elements of the power set can be taken to represent propositions concerning the actual
state of the system, by containing all and only the states in which the proposition is true.

The theory of evidence assigns a belief mass to each element of the power set. Formally, a
function

http://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory#cite_note-SH02-5
http://en.wikipedia.org/wiki/Epistemology
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Sensor_fusion
http://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory#cite_note-DE68-6
http://en.wikipedia.org/wiki/Bayesianism
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Universal_set
http://en.wikipedia.org/wiki/Power_set
http://en.wikipedia.org/wiki/Empty_set

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 8

is called a basic belief assignment (BBA), when it has two properties. First, the mass of the
empty set is zero:

Second, the masses of the remaining members of the power set add up to a total of 1:

The mass m(A) of A, a given member of the power set, expresses the proportion of all relevant
and available evidence that supports the claim that the actual state belongs to A but to no
particular subset of A. The value of m(A) pertains only to the set A and makes no additional
claims about any subsets of A, each of which have, by definition, their own mass.

From the mass assignments, the upper and lower bounds of a probability interval can be
defined. This interval contains the precise probability of a set of interest (in the classical
sense), and is bounded by two non-additive continuous measures called belief (or support)
and plausibility:

The belief bel(A) for a set A is defined as the sum of all the masses of subsets of the set of
interest:

The plausibility pl(A) is the sum of all the masses of the sets B that intersect the set of interest
A:

The two measures are related to each other as follows:

And conversely, for finite A, given the belief measure bel(B) for all subsets B of A, we can find
the masses m(A) with the following inverse function:

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 9

where |A − B| is the difference of the cardinalities of the two sets.

It follows from the last two equations that, for a finite set X, you need know only one of the
three (mass, belief, or plausibility) to deduce the other two; though you may need to know the
values for many sets in order to calculate one of the other values for a particular set. In the case
of an infinite X, there can be well-defined belief and plausibility functions but no well-defined
mass function.

 Q.6 a. Explain heuristics Search techniques. How are these techniques different
from blind search techniques? (8)

Answer:

 Q.6 b. Explain briefly Breadth first search and depth first search techniques.

Write algorithm also. (8)

Answer:
Breadth-first : first, check all nodes on the same depth. In other words, visit all the nearest
neighbours of the current root nodes; then move to the next depth level by considering the new
visited nodes as the root nodes.

Depth-first : First, check all nodes in the same branch. In other words, visit each neighbour of
the most recently visited node.

Consider the following graph:

Starting at root node 1, give the order in which the nodes will be
visited by the breadth-first and depth-first algorithms.
Answer:
Breadth-first : 1 - 2 - 3 - 4 - 5 - 6

Depth-first : 1 - 2 - 4 - 5 - 3 - 6

Breadth First Search

Breadth first search traverses a graph in what is sometime called level order. Intuitively it

http://en.wikipedia.org/wiki/Logical_consequence

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 10

starts at the source node and visits all the nodes directly connected to the source. We call these
level 1 nodes. Then it visits all the unvisited nodes connected to level 1 nodes, and calls these
level 2 nodes etc.

The simple way to implement breadth first search is using a queue. In fact when hear you
breadth you should think queue, and when you hear depth you should think stack. We have
the algorithm output a tree representing the breadth first search, and store the level of each
node. We have a parent array to store the search tree, a Level array to store the level, and a
visited array to remember who has already been placed on the queue

 Initialize: Queue Q = source; level[source] = 0, p[source] = nil;

For all nodes x do visited[x] = false;

visited[source]= true;

 Loop: While Q is not empty do {

 x = deleteq(Q);

 for all y adjacent to x do if visited[y] = false {

 visited[y]=true; level[y]=level[x]+1; p[y] = x; addq(Q, y)}

 }

The total time for initializing is O(n) and the total time for the queuing operations is O(n)
because each node is put on the queue exactly once. The total time in the main loop is O(e)
because we look at each edge at most twice, once from each direction. This gives a time
complexity of O(n+e).

 Depth First Search

 Depth first search (DFS) traverses a graph by going as deeply as possible before backtracking.
It is surprisingly rich with potential for other algorithms. It also returns a search tree. It does
not return the level of each node, but can return a numbering of the nodes in the order that they
were visited. We first show a depth first search skeleton and define the different kinds classes
of edges. Then we show how to augment the skeleton to solve two very basic algorithms:
topological sorting, connected components. Each of leverages the power of DFS at a different
location in the skeleton. We conclude with a sophisticated use of DFS that finds strongly
connected components of a directed graph. You may recall that in month 0 we discussed a
method in linear algebra using matrix multiplication that solved this algorithm in O(n^3). Our
method will work in O(n+e)

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 11

 Depth First Search Skeleton

 DFS(G, s)

 Mark s visited; Dfsnum[s] = count; count++; //count is a global counter initialized to
1.

/* Process s – previsit stage */
Recursive Loop: For every y adjacent to s do
 If y is unvisited then {DFS(G, y); parent[y] = x;} else…

/* process edges {s,y}*/;
/* Process s – postvisit stage */
Mark s finished

 Q.7 a. Write down the comparisons between conventional computers and neural

networks. (8)

Answer:
Comparison between conventional computers and neural networks

(1.) Parallel processing
One of the major advantages of the neural network is its ability to do many things at once.
With traditional computers, processing is sequential--one task, then the next, then the next, and
so on. The idea of threading makes it appear to the human user that many things are happening
at one time. For instance, the Netscape throbber is shooting meteors at the same time that the
page is loading. However, this is only an appearance; processes are not actually happening
simultaneously.
The artificial neural network is an inherently multiprocessor-friendly architecture. Without
much modification, it goes beyond one or even two processors of the von Neumann
architecture. The artificial neural network is designed from the onset to be parallel. Humans
can listen to music at the same time they do their homework--at least, that's what we try to
convince our parents in high school. With a massively parallel architecture, the neural network
can accomplish a lot in less time. The tradeoff is that processors have to be specifically
designed for the neural network.

(2.) The ways in which they function
Another fundamental difference between traditional computers and artificial neural networks is
the way in which they function. While computers function logically with a set of rules and
calculations, artificial neural networks can function via images, pictures, and concepts.
Based upon the way they function, traditional computers have to learn by rules, while artificial
neural networks learn by example, by doing something and then learning from it. Because of
these fundamental differences, the applications to which we can tailor them are extremely
different. We will explore some of the applications later in the presentation.

(3.) Self-programming

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 12

The "connections" or concepts learned by each type of architecture is different as well. The
von Neumann computers are programmable by higher level languages like C or Java and then
translating that down to the machine's assembly language. Because of their style of learning,
artificial neural networks can, in essence, "program themselves." While the conventional
computers must learn only by doing different sequences or steps in an algorithm, neural
networks are continuously adaptable by truly altering their own programming. It could be said
that conventional computers are limited by their parts, while neural networks can work to
become more than the sum of their parts.

(4.) Speed
The speed of each computer is dependant upon different aspects of the processor. Von
Neumann machines requires either big processors or the tedious, error-prone idea of parallel
processors, while neural networks requires the use of multiple chips customly built for the
application.

 b. Explain working of inference engine in an expert system using suitable

examples. (8)

Answer:

Inference Engine
The inference engine is the main processing element of the expert system. The inference
engine chooses rules from the agenda to fire. If there are no rules on the agenda, the inference
engine must obtain information from the user in order to add more rules to the agenda. It
makes use of knowledge base, in order to draw conclusions for situations. It is responsible for
gathering the information from the user, by asking various questions and applying it wherever
necessary.

Working of Inference Engine
The inference engine can be described as a form of finite state machine with a cycle consisting
of three action states: match rules, select rules, and execute rules. Rules are represented in the
system by a notation called predicate logic.

In the first state, match rules, the inference engine finds all of the rules that are satisfied by the
current contents of the data store. When rules are in the typical condition-action form, this
means testing the conditions against the working memory. The rule matchings that are found
are all candidates for execution: they are collectively referred to as the conflict set. Note that
the same rule may appear several times in the conflict set if it matches different subsets of data
items. The pair of a rule and a subset of matching data items is called an instantiation of the
rule.

In many applications, where large volume of data are concerned and/or when performance
time considerations are critical, the computation of the conflict set is a non-trivial problem.
Earlier research work on inference engines focused on better algorithms for matching rules to

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 13

data. The Rete algorithm, developed by Charles Forgy, is an example of such a matching
algorithm; it was used in the OPS series of production system languages. Daniel P. Miranker
later improved on Rete with another algorithm, TREAT, which combined it with optimization
techniques derived from relational database systems.

The inference engine then passes along the conflict set to the second state, select rules. In this
state, the inference engine applies some selection strategy to determine which rules will
actually be executed. The selection strategy can be hard-coded into the engine or may be
specified as part of the model. In the larger context of AI, these selection strategies are often
referred to as heuristics following Allen Newell's Unified theory of cognition.

In OPS5, for instance, a choice of two conflict resolution strategies is presented to the
programmer. The LEX strategy orders instantiations on the basis of recency of the time tags
attached to their data items. Instantiations with data items having recently matched rules in
previous cycles are considered with higher priority. Within this ordering, instantiations are
further sorted on the complexity of the conditions in the rule. The other strategy, MEA, puts
special emphasis on the recency of working memory elements that match the first condition of
the rule. (The latter heuristic is heavily used in means-ends analysis.)

Finally the selected instantiations are passed over to the third state, execute rules. The
inference engine executes or fires the selected rules, with the instantiation's data items as
parameters. Usually the actions in the right-hand side of a rule change the data store, but they
may also trigger further processing outside of the inference engine (interacting with users
through a graphical user interface or calling local or remote programs, for instance). Since the
data store is usually updated by firing rules, a different set of rules will match during the next
cycle after these actions are performed.

The inference engine then cycles back to the first state and is ready to start
ver again. This control mechanism is referred to as the recognize-act cycle. The inference
engine stops either on a given number of cycles, controlled by the operator, or on a quiescent
state of the data store when no rules match the data.

General Types of Inferencing:
In simple rule-based systems, there are two kinds of inference, forward chaining and
backward chaining.
Forward chaining: data gets put into working memory. This triggers rules whose conditions
match the new data. These rules then perform their actions. The actions may add new data to
memory, thus triggering more rules. And so on. This is also called data-directed inference,
because inference is triggered by the arrival of new data in working memory.
Backward chaining: the system needs to know the value of a piece of data. It searches for rules
whose conclusions mention this data. Before it can use the rules, it must test their conditions.
This may entail discovering the value of more pieces of data, and so on. This is also called

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 14

goal-directed inference, or hypothesis driven, because inferences are not performed until the
system is made to prove a particular goal (i.e. a question).

 Q.8 a. Differentiate between neural networks and expert system. (8)

Answer:

CHARACTERIS
TICS

TRADITIONAL
COMPUTING
(including Expert
Systems)

ARTIFICIAL
NEURAL
NETWORKS

Processing style
Functions

Sequential
Logically (left brained)
via Rules Concepts
Calculations

Parallel
Gestault (right
brained)
via Images
Pictures
Controls

Learning Method
Applications

by rules (didactically)
Accounting
word processing
math inventory
digital communications

by example
(Socratically)
Sensor processing
speech recognition
pattern recognition
text recognition

Table 1 Comparison of Computing Approaches

Characteristics

Von Neumann
Architecture
Used for Expert
Systems

Artificial Neural
Networks

Processors
VLSI
(traditional
processors)

Artificial Neural
Networks;
variety of technologies;
hardware development
is on going

Processing
Approach Separate The same

Processing Processes problem Multiple,

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 15

Approach rule at a one
time; sequential

simultaneously

Connections Externally
programmable

Dynamically self
programming

Self learning Only algorithmic
parameters modified Continuously adaptable

Fault tolerance None without
special processors

Significant in the
very nature of the
interconnected neurons

Neurobiology
in design None Moderate

Programming Through a rule based
complicated

Self-programming;
but network must be
set up properly

Ability to be fast Requires big
processors

Requires multiple
custom-built chips

Table 2 Comparisons of Expert Systems and Neural Networks.

Q.8 b. What are the advantages and disadvantages of Neural network computing?

Answer:

Advantages:

• A neural network can perform tasks that a linear program cannot.
• When an element of the neural network fails, it can continue without any problem by

their parallel nature.
• A neural network learns and does not need to be reprogrammed.
• It can be implemented in any application and without any problem.
• Does not use pre-programmed knowledge base
• Suited to analyze complex pattern
• Have no restrictive assumptions
• Allows for qualitative data
• Can handle noisy data
• Can overcome autocorrelation
• User-friendly: clear output, and robust and flexible

Disadvantages:

• The neural network needs training to operate.

AC/AT74 ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS DEC 2014

© IETE 16

• The architecture of a neural network is different from the architecture of
microprocessors therefore needs to be emulated.

• Requires high processing time for large neural networks.
• The neural network requires high quality data,
• Variables must be carefully selected a priori,
• Risk of overfitting,
• Requires a definition of architecture,
• Long processing time,
• Possibility of illogical network behavior, and
• Large training sample required

 Q.9 a. Explain how AI can be used in solving Real-World problems and in

enhancing scalability.

Answer: Page 270 of Reference-I

 Q.9 b. What do you mean by multi-agent systems (MAS)? Why are these

successful?

Answer: Page 278 of Reference-I

TEXT BOOK

I. Introduction to Artificial Intelligence, Rajendra Akerkar, PHI, 2005

	Working of Inference Engine

