
AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 1

Q.2a. Elaborate the technical and interpersonal skills required for a system analyst.

b.Give example of the type of system models that you might create during the analysis

Ans 2(a) System Analyst
For a System Development role, an individual must possess specific skills to effectively carry
out the job but these do not necessarily comprise extensive computer coding ability.
However, a system analyst should be thoroughly familiar with the system processes and
the business processes. The analyst should also thoroughly familiarize himself/herself with
the software systems being used for the software development process.
A System Analyst's skills can be divided into two categories:

• Interpersonal Ski lis
• Technical Skills.

Here are a few critical' skills which are essential for any person to take up a role as System
Analyst.

frnterpersonal Skills Technical Skills ...------- ___ I
0 Communication - should possess good / '

articulating and speaking skills , including /0 p bl 1 . h ld b bl t 1 , knowledge and proficiency in the language
ro em so vmg · s ou e a. e o so ve

d t d I th d t (E I
.

h)
problems, suggest alternate solutiOns and be use o eve op e pro uc . e.g.: ng ts .
. bl t t k h II U d d. h ld h d

r

a e 0 a e up c a enges. 0 n erstan mg - s ou ave a goo J D . t h ld h d . . . om am ex per - s ou ave a equate 1 understandmg of the company obJectives and
'k 1

d f th t d b fi · t · I I d d d. f h b'
now e ge o e sys em an e pro tcten m

goa s an a goo understan mg o t e su �ect'.
t '

of his area of work. ,10' 1 . . . M' d h ld b k · h I 0 D . l'ty h ld b 1 nqms1tive m - s ou e nowmg t e ynam1c persona 1 - s ou e a
h t h h h h d h

'
dynamic personality ready to accept new w a

t
' w en

k
, w y, w ere, w 0 an ow a'

h II Sh ld b
. 1. sys em wor s.

I c a enges. ou e pro-active persona tty [J p 'd' 8 t h ld b bl t
th · t' 1 rov1 mg uppor - s ou e a e o

an a reac tve.
'd h h · d 0 T PI h ld b d t provt e support to t e users w en requtre . earn ayer - s ou e a goo earn

player and know the team dynamics. i
_ _j

(6 marks)

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 2

process.

c.Describe Key process areas of Capability Maturity Model (CMM).

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 3

Q.3a. What do you understand by requirement elicitation? Discuss any two techniques in

detail. (8)

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 4

want it to be a success. The analyst must start by asking context-free questions. That is, a set
of questions that will lead to a basic understanding of the problem, the people who want a
solution, the nature of the solution that is desired, and the effectiveness of the first encounter
itself. The first set of context-free questions focuses on the customer, the overall goals, and
the benefits. For example, the analyst might ask:

• Who is behind the request for this work?
• Who will use the solution?
• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need? These questions help to
identify all stakeholders who will have interest in the software to be built. In addition, the
questions identifY the measurable benefit of a successful implementation and possible
alternatives to custom software development. The next set of questions enables the analyst to
gain a better understanding of the problem and the customer to voice his or her perceptions
about a solution:

(• How would you characterize "good" output that would be generated by a successful
solution?

• What problem(s) will this solution address?
• Can you show me (or describe) the environment in which the solution will be used?
• Will special performance issues or constraints affect the way the solution is

approached? The final set of questions called as meta-questions focuses on the effectiveness
of the meeting.

• Are you the right person to answer these questions? Are your answers "official"?
• Are my questions relevant to the problem that you have?
• Am I asking too many questions?
• Can anyone else provide additional information?
• Should I be asking you anything else?

Facilitated Application Specification Techniques Too often, customers and software
engineers have an unconscious "us and them" mind-set. Rather than working as a team to
identifY and refine requirements, each constituency defines its own "territory" and
communicates through a series of memos, formal position papers, documents, and question
and answer sessions. History has shown that this approach doesn't work very well.
Misunderstandings abound, important information is omitted, and a successful working
relationship is never established. It is with these problems in mind that a number of
independent investigators have developed a team-oriented approach to requirements
gathering that is applied during early stages of analysis and specification. Called facilitated
application specification techniques (FAST), this approach encourages the creation of a joint
team of customers and developers who work together to identify the problem, propose
elements of the solution, negotiate different approaches and specify a preliminary set of
solution requirements. FAST has been used predominantly by the information systems
community, but the technique offers potential for improved communication in applications of
all kinds. Many different approaches to FAST have been proposed. Each makes use of a
slightly different scenario, but all apply some variation on the following basic guidelines:

• A meeting is conducted at a neutral site and attended by both software engineers and
customers.

• Rules for preparation and participation are established.
• An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas.
• A "facilitator" (can be a customer, a developer, or an outsider) controls the meeting.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 5

b.Consider the program given below (8)
 void main()
 {
 int i,j,k;
 readln (i,j,k);
 if ((i < j) || (i > k))
 {
 writeln(“then part”);
 if (j < k)
 writeln (“ j less then k”);
 else writeln (“ j not less then k”);
 }
 else writenln(“else Part”);
 }
 (i) Draw the flow graph
 (ii) Determine the cyclomatic complexity
 (iii) Arrive at all the independent paths

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 6

Q.4a. List the benefits of prototyping. Differentiate between the objectives of evolutionary

and throw-away prototyping.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 7

b.Compute function point value for a project with the following domain characteristics:
 No. of I/P = 30
 No. of O/P = 62
 No. of user Inquiries = 24
 No. of files = 8
 No. of external interfaces = 2
 Assume that all the complexity adjustment values are average. Assume that 14

algorithms have been counted.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 8

c.Explain the general principles of user interface design.

Q.5 a. What is meant by design patterns? What are the advantages of using design
patterns? (4)

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 9

b.Discuss the important characteristics of distributed approach to system development?

c.What is difference between module coupling and module cohesion? List different types of

coupling and cohesion.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 10

Q.6a. Discuss the benefits and problems of software reuse.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 11

Ans6 (a): Benefits of reuse Increased dependability Reused software, t�tried and
tested in wor�ng systems, should be m ore dependable than new software. The initial use of
the software feveals any design and implementation faults. These are then fixed, thus
reducing the number of failures when the software is reused.

I. Redu.ced process risk If software exists, there is less uncertainty in the costs of
reusing that software than in the costs of development. This is an important factor for
project management as it reduces the margin of error in project cost estimation. This
is particularly true when relatively large software components such as sub-systems are
reused.

2. Effective use of specialists Instead of application specialists doing the same work on
different projects, these specialists can develop reusable software that encapsulates
their knowledge.

3. Standards compliance Some standards, such as user interface standards, can be
implemented as a set of standard reusable components. For example, if menus in a
user interfaces are implemented using reusable components, all applications present
the same menu formats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when presented with a familiar
interface.

4. Accelerated development Bringing a system to market as early as possible is often
more important than overall development costs. Reusing software can speed up
system production because both development and validation time should be reduced.

Reuse problems
I. Increased maintenance Costs If the source code of a reused software system or

component is not available then maintenance costs may be increased as the reused
elements of the system may become increasingly incompatible with system changes.

2. Lack of tool support CASE toolsets may not support development with reuse. It may
be difficult or impossible to integrate these tools with a component library system.
The software process assumed by these tools may not take reuse into account.

3. Not-invented-here Syndrome some software engineers sometimes prefer to re-write
components as they believe that they can improve on the reusable component. This is
partly to do with trust and partly to do with the fact that writing original software is
seen as more challenging than reusing other people's software.

4. Creating and maintaining a component library Populating a· reusable component
library and ensuring the software developers can use this library can be expensive.
Our current techniques for classifying, cataloguing and retrieving software
components are immature.. (6 marks)

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 12

 b. Explain :
 (i) Reverse Engineering
 (ii) Re-Engineering

Ans 6(b): Ans i) REVERSE ENGINEERING:-It is a process of analyzing software with a
view to understanding its design and specification.

• In this, source code and executable code are the input.
• It may be part of a re-engineering process but may also be used to respecify a system

for re-implementation.
• Builds a program data base and generates information from this.
• Program understanding tools (browsers, cross reference generates, etc.) may be used

in this process.
• Design and specification may be reverse re-engineer to:-

a) Serve as input to SRS for program replacement.
b) Be available to help program maintenance.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 13

Q.7 a. What is ripple effect? How does it affect the stability of a program?

Reverse Engineering often precedes Re-Engineering but is sometime�le in its own

right. The design and specification of a system may be reverse engineered so that they can be

an input to the
'
requirements specification process for the system replacement. The design and

specification may be reverse engineered to support program maintenance. (5 marks)

ii) RE-ENGINEERING:- It is re-organizing and modifying existing system to make them

more maintainable. It involves:-

• Source code translation.

• Reverse engineering.

• Program structure development.

• Program modularization.

• Data re-engineering.

Restructuring or re-writing part or all of the legacy system without changing its functionality.

Legacy system is a system that is hard to maintain. So it involves:-

!) Re-documenting the system.

2) Organizing and re-structuring the system.

3) Modifying and upgrading structure and value of the system data.

4) Input to a re-engineering process is a legacy system and output is a structure modularized

version of the same program. So re-engineering involves adding effort to make them easier to

maintain. The system may be restructured or redocumented.

When to Re-Engineer?

• When the system changes are mostly confined to part of the system then re-engineer

that part.

• When hardware or software support becomes obsolete.

• When tools to support re-structuring are available.

Advantages of Re-Engineering:-

1) Reduced risk- there is a high risk in new software development.

There may be development problems, staffing problems and specification problems.

2) Reduced cost - the cost of re-engineering is often significantly less than the cost of

developing new software.

Re-Engineering cost factors:-

1) The quality of the software to be re-engineered.

2) The tool support available for re-engineering.

3) The extent of the data conversion, which is required.

4) The availability of expert staff for re-engineering. (5 marks)

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 14

b.Explain fault-tolerant architecture with suitable diagram.

 Ans Page 506 of Text Book. Unit 6

c.Write a brief note on the following estimation techniques:)
 (i) Algorithmic cost modelling
 (ii) Expert judgement
 (iii) Estimation by analogy

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 15

Q.8 a. Explain various types of debugging techniques used in Software testing.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 16

b.What are the advantages of using testing tools? Explain in detail different type of testing

tools.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 17

c. Explain some of the limitations of testing.

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 18

Q.9 a. Write short notes on: 2)
 (i) Configuration Management
 (ii) Decision Table

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 19

Ans �ta): Ans: (i) Configuration Management:
Due to several reasons, software changes during its life cycle. As a result of the changes
made, multiple versions of the software exist at one time. These changes must be managed,
controlled and documented properly in order to have reliable systems.

Configuration management helps the developers to manage these changes
systematically by applying procedures and standards and by using automated tools.
Though multiple versions of the software exist in the tool repository, only one official version
of set of project components exist called baseline.

The different components of the baseline are called configuration items. Some
examples of configuration items are project plan, SRS, Design document, test plans, user
manuals etc.. A group of people constitute Configuration Control Board (CCB) which
controls the changes to be made to the software. Whenever changes are to be made the
following steps are followed:
(i) Submit the change request along with details to CCB
(ii) CCB accesses the change request after proper evaluation.
(iii) Depending upon the results, the request is either accepted or rejected or can be deferred
for the future assessment.
(iv) If accepted, proper plan is prepared to implement the change.
(v) Once changes are made, after validating by the quality personnel, all configuration items
are updated.
Some popular configuration management tools are Clear CASE, Visual Source Safe etc.

(4 marks)

(ii) Decision Table: When the process logic for a process involves multiple conditions and is
very complicated, it is not advisable to use structured English.
lnstead decision tables are used. Main parts of the table are:
I. Condition Stubs

2. Action Stubs
3. Roles
Condition stubs list all the conditions relevant to the decision. Action part lists all the actions
that will take place for a valid set of conditions. Finally rules parts of the table specify the set
of conditions that will trigger a particular action. A sample decision table is shown below:

Rule I Rule2 Rule 3

Condition I X X

Condition 2 X

Condition 3 X X

Condition 4 X

Action 1 X

Action 2 X

Action 3 X

From this table it is clear that if conditions I and 3 are satisfied, Action I will be triggered.
(4 marks)

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 20

b. With the help of a figure, explain the key stages of software measurement process
which is a part of a quality control process.

Ans 9(b): A software measurement process that may be part of a quality process is shown in
figure below. Each of the components of the system is analysed separately, and the values of

�:he metric compared both with each other and, perhaps, with historical measurement data
collected on previous projects. Anomalous measurements should be used to focus the quality
assurance effort on components that may have quality problems. The key stages in this
process are:

• Choose measurements to be made: The questions that the measurement is intended to
answer should be formulated and the measurements required to answer these
questions defined. Measurements that are not directly relevant to these questions need
not be collected. Basili's GQM (Goal-Question-Metric) paradigm is a good approach
to use when deciding what data is to be collected.

• Select components to be assessed: It may not be necessary or desirable to assess metric
values for all of the components in a software system. In some cases, you can select a
representative selection of components for measurement. In others, components that
are particularly critical, such as core components that are in almost constant use,
should be assessed.

The proce�s or produ('t mt"tlMII'E'IlltUt

• Measure component characteristics: The selected components are measured and the
associated metric values computed. This normally involves processing the component
representation (design, code, etc.) using an automated data collection tool. This tool
may be specially written or may already be incorporated in CASE tools that are used
in an organisation.

• Identify anomalo11s measurements: Once the component measurements have been
made, you should compare them to each other and to previous measurements that
have been recorded in a measurement database. You should look for unusually high or
low values for each metric, as these suggest that there could be problems with the
component exhibiting these values.

• Analyse anomalous components: Once components that have anomalous values for
particular metrics have been identified, you should examine these components to
decide whether the anomalous metric values mean that the quality of the component is
compromised. An anomalous metric value for complexity does not necessarily mean a
poor quality component. There may be some other reason for the high value and it
may not mean that there are component quality problems. (8 marks)

AC63/AT63 SOFTWARE ENGINEERING DEC 2014

© IETE 21

Text Book

1.Software Engineering, Ian Sommerville, 7th edition, Pearson Education, 2004 (TB-I)

