AC63/AT63 SOFTWARE ENGINEERING| DEC 2014

Q.2a. Elaborate the technical and interpersonal skills required for a system analyst.

Ans 2(a) System Analyst
For a System Development role, an individual must possess specific skills to effectively carry
out the job but these do not necessarily comprise extensive computer coding ability.
However, a system analyst should be thoroughly familiar with the system processes and
the business processes. The analyst should also thoroughly familiarize himself/herself with
the software systems being used for the software development process.
A System Analyst's skills can be divided into two categories:

« Interpersonal Skills

« Technical Skills.
Here are a few critical skills which are essential for any person to take up a role as System
Analyst

dnterpersonal Skills e Techmcal SklllS

1 Communication - should POSSESS good

articulating and speaking skills, including .
knowle dgeg Age pr([)) ﬁciengy o the languaggn'l Problem solving - should be gble to solve
st ool e (e Bl problems, suggest alternate solutions and be
0 Understanding - should have a goo da:bl&;)to il chalienge; it
understandmg of the company objectives and i ow(;gia:anogl?:rs ;te:n(:iun d beaviogcfé]:ta;
goals and a good understanding of the subject . t .) P
of his area of work.

Dynamic personality - should be a
dynamic personality ready to accept new
challenges. Should be pro-active personality
than a reactive.

Team Player - should be a good team

player and know the team dynamics.

I Inquisitive Mind - should be knowing the
what, when, why, where, who and how a
system works.

[Providing Support - should be able to
provide support to the users when required.

(6 marks)
b.Give example of the type of system models that you might create during the analysis

© IETE 1

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

process.

Ans 2(b) Examples of the types of system models that might be created during the analysis

process are:
* A data-flow model: Data-flow models show how data is processed at different stages in the

system.
* A composition model: A composition or aggregation model shows how entities in the

system are composed of other entities.
* An architectural modef: Architectural models show the principal sub-systems that make up

a system.
* A classification model: Object class/inheritance diagrams show how entities have common

characteristics.

A stimulus-response model: A stimulus-response model, or state transition diagram, shows
how the system reacts to internal and external events. (4 marks)

c.Describe Key process areas of Capability Maturity Model (CMM).

:En_s 2(c) Predictability, effectivcr!ess. and control of an organization's software processes ar
Ilrfv_ed to !u1pmve as the organization moves up these five levels. While not rigorous, th
empirical evidence to date supports this belief, ‘

uration management

as&mngin:e Qualty management
management Quantiathe

Project tracking and aht Process management
Project planning g

Requirements managemert

Intergroup coorination

Product engineering Process change mgt.
Integrated management Technology change mgt.
Training program Defect prevention
Organization process definition

Except for Level 1. each maturity level is decom i process areas

Exc : natu posed into several ke 5§ h
indicate the areas an orgamization should focus on to improve its suﬁ:wa{e process. The ;c:;
process areas at Level 2 focus on the project's concerns related to establishing basic project
Mmanagement controls. They are Requirements Management, Project Planning, Project

Tracking and i . :
Managci:;‘t. Oversight, Subcontract Management, Quality Assurance, and Configuration

© IETE

63/AT63 SOFTWARE ENGINEERING | DEC 2014
AC

Mmanagement processes across all projects. They are Organization Process Focus,
Organization Process Definition, Training Program, Integrated Management, Product
Engineering, Intergroup Coordination, and Peer Reviews,

The key process areas at Leve| 4 focus on establishing a quantitative understanding of
both the process and the work products being built. They are Quantitative Process
Management and Quality Management,

The key process areas at Level 5 cover the issues that both the organization and the
projects must address to implement continual, measurable software process improvement,
They are Defect Prevention, Technology Change Management, and Process Change
Management. Each key process area is described in terms of the key practices that contribute
to satisfying its goals. The key practices describe the infrastructure and activities that
contribute most to the effectjve implementation and institutionalization of the key process
area (6 marks)

Q 36; What do you understand by requirement elicitation? Discuss any two tecfzg)lques in
o detail.

© IETE

AC63/AT63 SOFTWARE ENGINEERING IDEC 2014

—

want it to bea success. The analyst must start by asking context-free questions. That is, a set
of questions that will lead to a basic understanding of the problem, the people who want a
solution, the nature of the solution that is desired, and the effectiveness of the first encounter
itself. The first set of context-free questions focuses on the customer, the overall goals, and
the benefits. For example, the analyst might ask:

* Who is behind the request for this work?

* Who will use the solution?

* What will be the economic benefit of a successful solution?

 Is there another source for the solution that you need? These questions help to
identify all stakeholders who will have interest in the software to be built. In addition, the
questions identify the measurable benefit of a successful implementation and possible
alternatives to custom software development. The next set of questions enables the analyst to
gain a better understanding of the problem and the customer to voice his or her perceptions
about a solution:

*» How would you characterize "good" output that would be generated by a successful <
solution? -

* What problem(s) will this solution address?

* Can you show me (or describe) the environment in which the solution will be used?

* Will special performance issues or constraints affect the way the solution is
approached? The final set of questions called as meta-questions focuses on the effectiveness
of the meeting.

* Are you the right person to answer these questions? Are your answers "official"?

* Are my questions relevant to the problem that you have?

« Am | asking too many questions?

* Can anyone else provide additional information?

* Should I be asking you anything else?

Facilitated Application Specification Techniques Too often, customers and software
engineers have an unconscious "us and them" mind-set. Rather than working as a team to
identify and refine requirements, each constituency defines its own "territory" and
communicates through a series of memos, formal position papers, documents, and question
and answer sessions. History has shown that this approach doesn't work very well.
Misunderstandings abound, important information is omitted, and a successful working
relationship is never established. It is with these problems in mind that a number of
independent investigators have developed a team-oriented approach to requirements
gathering that is applied during early stages of analysis and specification. Called facilitated
application specification techniques (FAST), this approach encourages the creation of a joint
team of customers and developers who work together to identify the problem, propose
elements of the solution, negotiate different approaches and specify a preliminary set of
solution requirements. FAST has been used predominantly by the information systems
community, but the technique offers potential for improved communication in applications of
all kinds. Many different approaches to FAST have been proposed. Each makes use of a
slightly different scenario, but all apply some variation on the following basic guidelines:

« A meeting is conducted at a neutral site and attended by both software engineers and
customers.

* Rules for preparation and participation are established.

* An agenda is suggested that is formal enough to cover all important points but
informal enough to encourage the free flow of ideas.

* A "facilitator" (can be a customer, a developer, or an outsider) controls the meeting.

© IETE 4

AC63/AT63 SOFTWARE ENGINEERING

DEC 2014

* A "definition mechanism" (can be work sheets, flip charts, or wall stickers or an

electronic bulletin board, chat room or virtual forum) is used.

+ The goal is to identify the problem, propose elements of the solution, negotiate
different approaches, and specify a preliminary set of solution requirements in an atmosphere

that is conducive to the accomplishment of the goal.

b.Consider the program given below
void main()
{
inti,jk;
readin (i,j,k);
i{f (<)) [I (1> K))

writeln(“then part”);

if (j <k)

writeln (* j less then k”);

else writeln (* j not less then k”);

else writenIn(“else Part™);

}

(i) Draw the flow graph

(i1) Determine the cyclomatic complexity
(iii) Arrive at all the independent paths

Ans 3(b): Ans:

void main()

{

1 intij.k:

2 readin (i,j.k);
3iG<DICi=k))

;

4 writeln("then part™);
5if(j <k)

6 writeln ("j less then k");
7 else writeln (" j not less then k™);
8}

9 else writeln("else Part™);

(8)

© IETE

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

L S
ey
S, (2 marks)
(ii) Cyclomatic complexity=E-N+2=12-10+2=4 (2 marks)
(iii) The four independent paths are (4 marks)

Pathl : 123910
Path2 : 12457810
Path3:12456810
Path4 : 123457810

Q.4a. List the benefits of prototyping. Differentiate between the objectives of evolutionary
and throw-away prototyping.

Ans 4a. Benefits of prototyping:

* Misunderstandings between software users and developers are exposed

* Missing services may be detected and confusing services may be identified
* A working system is available early in the process

* The prototype may serve as a basis for deriving a system specification

* The system can support user training and system testing

© IETE

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

The objective of evolutionary prototyping is to deliver a working system to end-users. The
development starts with those requirements which are best understood. ‘
The objective of throw-away prototyping is to validate or derive the system requirements.
The prototyping process starts with those requirements which are poorly understood.

(6 marks)

b.Compute function point value for a project with the following domain characteristics:
No. of I/P =30
No. of O/P =62
No. of user Inquiries = 24
No. of files=8
No. of external interfaces = 2
Assume that all the complexity adjustment values are average. Assume that 14
algorithms have been counted.

Ans 4(b): We know

UFP=X Wij Zi where j=2 because all weighting factors are average.
=30%4+62*5+24*4+810+2*7
=120+310+96+80+14 S Lu - 0
=620 fore ho
CAF=(0.65+0.01Z Fi) E W‘ =
=0,65+0.01(14*3) o
=0.65+0.42 W X \d

=1.07 TIAN

nFP=UFP*CAF

=620*1.07

=663.4~663 (6 marks)

© IETE 7

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

c.Explain the general principles of user interface design.

Ans 4(c): structures the principle. Your design should organize the user interface
purposefully, in meaningful and useful ways based on clear, consistent models that are
apparent and recognizable to users, putting related things together and separating unrelated
things, differentiating dissimilar things and making similar things resemble one another. The
structure principle is concerned with your overall user interface architecture.

|. The simplicity principle. Your design should make simple, common tasks simple to do,
communicating clearly and simply in the user’s own language, and providing good shortcuts
that are meaningfully related to longer procedures.

2. The visibility principle. Your design should keep all needed options and materials for a
given task visible without distracting the user with extraneous or redundant information.
Good designs don’t overwhelm users with too many alternatives or confuse them with
unneeded information.

3. The feedback principle. Your design should keep users informed of actions or
interpretations, changes of state or condition, and errors or exceptions that are relevant and of
interest to the user through clear, concise, and unambiguous language familiar to users.

4. The tolerance principle. Your design should be flexible and tolerant, reducing the cost of
mistakes and misuse by allowing undoing and redoing, while also preventing errors wherever
possible by tolerating varied inputs and sequences and by interpreting all reasonable actions
reasonable.

5. The reuse principle. Your design should reuse internal and external components and
behaviours, maintaining consistency with purpose rather than merely arbitrary consistency,
thus reducing the need for users to rethink and remember. (4 marks)

Q.5 a. What is meant by design patterns? What are the advantages of using design
patterns? (4)

Ans 5(a): Design patterns are reusable solutions to problems that recur in many applications.
A pattern serves as a guide for creating a “good” design. Patterns are based on sound
common sense and the application of fundamental design principles. These are created by
people who spot repeating themes across designs. The pattern solutions are typically
described in terms of class and interaction diagrams. Examples of design patterns are expert
pattern, creator pattern, controller pattern etc.

© IETE 8

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

Design patterns are very useful in creating good software design solutions. In addition
to providing the model of a good solution, design patterns include a clear specification of
the problem; and also explain the circumstances in which the solution would and would
not work. Thus, a design pattern has four important parts:

* The problem.

* The context in which the problem occurs.

* The solution.

* The context within which the solution works. (4 marks)

b.Discuss the important characteristics of distributed approach to system development?

Ans 5(b): The important characteristics of distributed approach to system development are as
follow:

* Resource sharing: A distributed system allows the sharing of hardware and software
resources — such as disks, printers, files, and compilers — that are associated with computers
on a network.

* Openness: Distributed systems are normally open systems, which mean they are designed
around standard protocols that allow equipment and software from different vendors to be
combined.

* Concurrency: In a distributed system, several processes may operate at the same time on
separate computers on the network. These processes may (but need not) communicate with
each other during their normal operation.

* Scalability: In principle at least, distributed systems are scalable in that the capabilities of
the system can be increased by adding new resources to cope with new demands on the
system. In practice, the network linking the individual computers in the system may limit the
system scalability. If many new computers are added, then the network capacity may be
inadequate.

* Fault tolerance: The availability of several computers and the potential for replicating
information means that distributed systems can be tolerant of some hardware and software
failures. In most distributed systems, a degraded service can be provided when failures occur;
complete loss of service only tends to occur when there is a network failure. (6 marks)

c.What is difference between module coupling and module cohesion? List different types of
coupling and cohesion.

© IETE 9

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

Ans 5(c): Cohesion is the property of a single module and can be described as glue that keeps
the data elements within a single module together. While defining, we must aim for high
cohesion. Different types of cohesion are:

e Coincidental Cohesion

o Logical Cohesion

o Temporal Cohesion

e Communicational Cohesion

e Sequential Cohesion

o Functional Cohesion

o Procedural Cohesion
Coupling on the other hand is the measure of dependence among modules. A designer must
try for minimum coupling. Different types of coupling are:

¢ Content Coupling

o Common Coupling

¢ Control Coupling

o Stamp Coupling

o Data Coupling

With some details of each........ccocoverrurncenns (6 marks)

Q.6a. Discuss the benefits and problems of software reuse.

© IETE 10

AC63/AT63 SOFTWARE ENGINEERING

/,.

Ans6 (a): Beneﬁts of reuse Increased dependability Reused software, that has been tried and
tested in workmg systems, should be m ore dependable than new software. The initial use of

the software reveals any design and implementation faults. These are then fixed, thus

reducing the number of failures when the software is reused.

Reduced process risk If software exists, there is less uncertainty in the costs of
reusing that software than in the costs of development. This is an important factor for
project management as it reduces the margin of error in project cost estimation. This
is particularly true when relatively large software components such as sub-systems are
reused.

Effective use of specialists Instead of application specialists doing the same work on
different projects, these specialists can develop reusable software that encapsulates
their knowledge.

Standards compliance Some standards, such as user interface standards, can be
implemented as a set of standard reusable components. For example, if menus in a
user interfaces are implemented using reusable components, all applications present
the same menu formats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when presented with a familiar
interface.

Accelerated development Bringing a system to market as early as possible is often
more important than overall development costs. Reusing software can speed up
system production because both development and validation time should be reduced.

Reuse problems

L.

Increased maintenance Costs If the source code of a reused software system or
component is not available then maintenance costs may be increased as the reused
elements of the system may become increasingly incompatible with system changes.
Lack of tool support CASE toolsets may not support development with reuse. It may
be difficult or impossible to integrate these tools with a component library system.
The software process assumed by these tools may not take reuse into account.
Not-invented-here Syndrome some software engineers sometimes prefer to re-write
components as they believe that they can improve on the reusable component. This is
partly to do with trust and partly to do with the fact that writing original software is
seen as more challenging than reusing other people’s software.

Creating and maintaining a component library Populating a reusable component
library and ensuring the software developers can use this library can be expensive.
Our current techniques for classifying, cataloguing and retrieving software
components are immature.. (6 marks)

© IETE

DEC 2014

11

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

b. Explain:
(i) Reverse Engineering
(if) Re-Engineering

Ans 6(b): Ans i) REVERSE ENGINEERING:-It is a process of analyzing software with a
view to understanding its design and specification.
* In this, source code and executable code are the input.
e [t may be part of a re-engineering process but may also be used to respecify a system
for re-implementation.
o Builds a program data base and generates information from this.
e Program understanding tools (browsers, cross reference generates, etc.) may be used
in this process.
e Design and specification may be reverse re-engineer to:-
a) Serve as input to SRS for program replacement.
b) Be available to help program maintenance.

© IETE 12

AC63/AT63
SOFTWARE ENGINEERING | DEC 2014

\

Reverse Engineering often precedes Re-Engineering but is sometimes worthwhile in its own
right. The de§ign and specification of a system may be reverse engineered so that they can be
an input to the requirements specification process for the system replacement. The design and
specification may be reverse engineered to support program maintenance. (5 marks)

i) RE-ENGINEERING:- It is re-organizing and modifying existing system to make them
more maintainable. It involves:-
o Source code translation.
Reverse engineering.
Program structure development.
Program modularization.
Data re-engineering.
Restructuring or re-writing part or all of the legacy system without changing its functionality.
Legacy system is a system that is hard to maintain. So it involves:-
) Re-documenting the system.
2) Organizing and re-structuring the system.
3) Modifying and upgrading structure and value of the system data.
4) Input to a re-engineering process is a legacy system and output is a structure modularized
version of the same program. So re-engineering involves adding effort to make them easier to
maintain. The system may be restructured or redocumented.
When to Re-Engineer?
o When the system changes are mostly confined to part of the system then re-engineer
that part.
o When hardware or software support becomes obsolete.
o When tools to support re-structuring are available.
Advantages of Re-Engineering -
1) Reduced risk — there is a high risk in new software development.
There may be development problems, staffing problems and specification problems.
2) Reduced cost - the cost of re-engineering is often significantly less than the cost of
developing new software.
Re-Engineering cost factors:-
1) The quality of the software to be re-engineered.
2) The tool support available for re-engineering.
3) The extent of the data conversion, which is required.
4) The availability of expert staff for re-engineering. (5 marks)

Q.7 a. What is ripple effect? How does it affect the stability of a program?

© IETE 13

AC63/AT63 SOFTWARE ENGINEERING

DEC 2014

Ans 7(a) The ripple effect is a term used to describe a situation where, like the ever
expanding ripples across water when an object s dropped into it, an effect from an initial
state can be followed outwards incrementally. Examples can be found in econom ics where an
individual's reduction in spending reduces the incomes of others and their ability to spend. In
sociology it can be observed how social interactions can affect situations not directly related
to the initial interaction. and in charitable activities where information can be disseminated
and passed from community to community to broaden its impact.

In software, the effect of a modification may not be local to the modification, but may
also affect other portions of the program. There is a ripple effect from the location of the
modification o the other parts of the programs that are affected by the modification. One
aspect of the ripple effect concerns the performance of the program. The primary attribute
affecting the ripple effect as a conscquence of a program modification is the stability of the
program. Program stability is defined as the resistance to the amplification of changes in the

program. (4 marks)

b.Explain fault-tolerant architecture with suitable diagram.
Ans Page 506 of Text Book. Unit 6

c.Write a br_ief note on the following estimation techniques:
(!) Algorithmic cost modelling
(ii) Expert judgement
(iii) Estimation by analogy

Ans7(c) Algorithmic: A formulaic approach based on historical cost information and which
is generally based on the size of the software, (2 marks)

g]xpelrt Judgerpent: Qne Or more experts in both software development and the application
omain use their experience to predict software costs. Process iterates until some consensus is
reached. (2 marks)

Estimation by analogy: The cost of a project i : :
s i : project is computed by comparing the project t
similar project in the same application domain. 2 marks)p el

© IETE

14

AC63/AT63 SOFTWARE ENGINEERING

DEC 2014

Q.8 a. Explain various types of debugging techniques used in Software testing.

Ans 8(a): Ans. Debugging is the activity of locating and correcting errors. Various
debugging techniques are:-

1) Core dumps:-A printout of all registers and relevant memory location is obtained and
studies. All dumps should be well documented and retained for possible use on subsequent
problems,

Advantages:-

I The complete contents of a memory at a crucial instant of time are obtained for study.

2. Can be cost effective if used to explore validity of a well formulated error hypothesis.
Disadvantages:-

I. Require some CPU time, significant input time, and much analysis time.

2. Wasteful if used indiscriminately.

3. Hexadecimal numbers are cumbersome to interpret and it is difficult to determine the
address of source language variables.

2) Traces:-Printout contains only certain memory and register contents and printing is
conditional on some event occurring. Typical conditionings are entry, exit, or use of-

1) A particular subroutine, statement, macro, or database;

2) Communication with a terminal, printer, disk, or other peripheral;

3) The value of a variable or expression; and

4) Timed actuations in certain real time system.

A special problem with trace programs is that the conditions are entered in the source
language and any changes require a recompilation.

3) Print statements:-The standard print statement in the language being used is sprinkled
throughout the program to output values of key variables.

Advantages:-

I) This is a simple way to test whether a particular variable changes, as it should after a
particular event. :

© IETE

15

3/AT63 SOFTWARE ENGINEERING | DEC 2014
AC6

2) A sequence of print statemens portrays the dynamics of variable chang\er—"’
Disadvantages:-

1) They aré cumbersome to use on large programs.

2) If used indiscriminately they can produce copious data to be analyzed much of which is
superfluous,

4) Debugging programs:-A program which runs concurrently with the program under test and
provides commands to examine memory and registers, sop execution of g program at a

particular point, search for references to paticular constants, variables, registers,
Advantages:-

1) Terminal oriented real time program,

2) Considerable flexibility to examine dynamics of operation,
Disadvantages:-

1) Generally works on a machine language program,
2) Higher-level language versions must work with interpreters.

3) More commonly used on microcom uters than large computers, 6 marks
p il di of testing
b.What are the advantages of using testing tools? Explain in detail different type
. tools.

Ans 8(): Ans: The advantages of tesing tools are;

They improve the produciviy and quality of software evelopment,

Help in identification of emors whigh e difficult and time conguming o find
manually

Reduce theteting fime,

Help in running large volumes oftegt unattended for 24 hours,
Automatic generation of et cages

Automaed the regression fesing,

v Improve the productvity ofthe eger,

16

© IETE

T63 SOFTWARE ENGINEERING | DEC 2014
ACG63/A

Some of the important testing tools are:

(a) Test Case Generators; These tools gencrate fest cases from SRS, program or test design
languages. They use certain rules called fest design techniques to generae rest cascs,

(b) Capture/ Playback and Test hamess tools: These tools automate the re running of manual
test by recording and replaying the test scripts. The recorded test scripts can also be edited as
per need. They can be either intrusive or no intrusive type. Intrusive tools along with
software under test reside on the same machine,

(¢) Coverage Analysis Tools; These tools ensure that the software is tested and helps the
tester to find the parts which are not covered

(d) Test Comparators: These tools compare the results of software under tegt with the
expected results and generate the report,

() Memory Testing Tools: These tools are used {o test memory related problems, such as
using uninitialized memory location, accessing memory locations which are out of range etc,
(f) Simulators: These tools are used t simulate the hardware/ software with which software
under test is going to interact,

(g) Test database: It is a sample of database which is being manipulated by software under
test. (6 marks)

c Explain some of the limitations of testing.

Ans 8(c): Ans: Though testing s an important part of system development and leads tg g
valid, verified and efficient system, it also faces some limitation in its scope.
Following are some of such limitatiops,

* Itis very difficult to trace out logical errors through Testing,

o Stress testing or load tests are no the realistic options and hence, it cannot be defined
that how application or module will he reacting at heavy data loads,

17
© IETE

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

X

o In Integraion testing skeletons of different modules are 1S¢d, Which cannot deseribe
the full functioning and intum th complete behaviour of module they are

representing
. Being performed at ltr stags,testing may lead 0. complete redevelopment of the
module nder testing and hence puttng all ffcts n vain, (4 marks)
Q.9 a. Write short notes on: 2)

(i) Configuration Management
(i) Decision Table

© IETE 18

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

Ans y(a): Ans: (1) Configuration Management:

Due to several reasons, software changes during its life cycle. As a result of the changes
made, multiple versions of the software exist at one time. These changes must be managed,
controlled and documented properly in order to have reliable systems.

Configuration management helps the developers to manage these changes
systematically by applying procedures and standards and by using automated tools.

Though multiple versions of the software exist in the tool repository, only one official version
of set of project components exist called baseline.

The different components of the baseline are called configuration items. Some
examples of configuration items are project plan, SRS, Design document, test plans, user
manuals etc. A group of people constitute Configuration Control Board (CCB) which
controls the changes to be made to the software. Whenever changes are to be made the
following steps are followed:

(i) Submit the change request along with details to CCB
(ii) CCB accesses the change request after proper evaluation.
(iii) Depending upon the results, the request is either accepted or rejected or can be deferred
for the future assessment.
(iv) If accepted, proper plan is prepared to implement the change.
(v) Once changes are made, after validating by the quality personnel, all configuration items
are updated.
Some popular configuration management tools are Clear CASE, Visual Source Safe etc.
(4 marks)

(ii) Decision Table: When the process logic for a process involves multiple conditions and is
very complicated, it is not advisable to use structured English.

Instead decision tables are used. Main parts of the table are:

1. Condition Stubs

2. Action Stubs

3. Roles

Condition stubs list all the conditions relevant to the decision. Action part lists all the actions
that will take place for a valid set of conditions. Finally rules parts of the table specify the set
of conditions that will trigger a particular action. A sample decision table is shown below:

Rule 1 Rule 2 Rule 3

Condition 1 X X

Condition 2 X

Condition 3 X X
Condition 4 ' X
Action 1 X

Action 2 X

Action 3 X

From this table it is clear that if conditions 1 and 3 are satisfied, Action 1 will be triggered.
(4 marks)

© IETE 19

AC63/AT63 SOFTWARE ENGINEERING |DEC 2014

b. With the help of a figure, explain the key stages of software measurement process
which is a part of a quality control process.

Ans 9(b): A software measurement process that may be part of a quality process is shown in
figure below. Each of the components of the system is analysed separately, and the values of
“he metric compared both with each other and, perhaps, with historical measurement data
collected on previous projects. Anomalous measurements should be used to focus the quality
assurance effort on components that may have quality problems. The key stages in this
process are:

* Choose measurements to be made: The questions that the measurement is intended to
answer should be formulated and the measurements required to answer these
questions defined. Measurements that are not directly relevant to these questions need
not be collected. Basili’s GQM (Goal-Question-Metric) paradigm is a good approach
to use when deciding what data is to be collected.

« Select components to be assessed: It may not be necessary or desirable to assess metric
values for all of the components in a software system. In some cases, you can select a
representative selection of components for measurement. In others, components that
are particularly critical, such as core components that are in almost constant use,
should be assessed.

Choose
NSNS Uremnents

1o be made

Analyse
mnomalons

COMmponents
e

N

Tdkentity
anomalons
neasUremens

Seleat
Components o
be assessed

Measure
component
charactenstics

The Process of prodnct measuremeul

o Measure component characteristics: The selected components are measured and the
associated metric values computed. This normally involves processing the component
representation (design, code, etc.) using an automated data collection tool. This tool
may be specially written or may already be incorporated in CASE tools that arc used
in an organisation.

o Identify anomalous measurements: Once the component measurements have been
made, you should compare them to each other and to previous measurements that
have been recorded in a measurement database. You should look for unusually high or
low values for each metric, as these suggest that there could be probiems with the
component exhibiting these values.

* Analyse anomalous components: ®nce components that have anomalous values for
particular metrics have been identified, you should examine these components to
decide whether the anomalous metric valucs mean that the quality of the component is
compromised. An anomalous metric value for complexity does not necessarily mean a
poor quality component. There may be some other reason for the high value and it
may not mean that there arc component quality problems. (8 marks)

© IETE 20

AC63/AT63 SOFTWARE ENGINEERING | DEC 2014

Text Book

1.Software Engineering, lan Sommerville, 7th edition, Pearson Education, 2004 (TB-1)

© IETE 21

