Q.2a. How a raster image is created? Discuss the three principal sources of creating them.
b.Differentiate between line-drawing displays and raster displays.
c.Define color lookup table.

How many different colors can be displayed in a graphic system when the color depth is $\mathbf{8}$ bits and look up table entry is 12 bits wide?

Q-2 (a) Explanahor: Sechon 1.3 .4 Page 47-48 (text 1
2 (b) Explanater Seluon Page-54,55 (Textbook)
2(c) Explanation Page 59,60 susian nth $b=8$ bet planes an LUT wrath $w=12$ can disp.
, any 256 of them at a time.
Q.3a. Give the Open GL code for drawing the dot plot of a function.
b. Define the terms window \& Viewport. Find the normalization transformation that maps a window whose lower left corner is at $(1,1)$ and upper right corner is at $(3,5)$ onto
(i) Viewport that is the entire normalized device screen.
(ii) Viewport that has lower left corner at (0,0) and upper right corner at $(1 / 2,1 / 2)$

3 (b) contrued on Rest page

Q.4a.How Cohen Sutherland line clipping algorithm differs from Cyrus-Beck line algorithm? Discuss all cases of line clipping, which arise in Cohen Sutherland algorithm. Draw suitable diagram to discuss the cases.

b. Use the Cohen Sutherland algorithm to clip $P_{1}(70,20)$ and $P_{2}(100,10)$ against a window with lower left hand corner $(50,10)$ and upper right hand corner $(80,40)$.

4(b) ctd:
Mow we arsugs 4 bot bnaly outcode.
Pourt P_{1} is mside the cundow so outcode of P_{1} z 10000)
and outcode of $P_{2}=10010$) as P_{2} is nget of undew And of $P_{1} \& P_{2}$
$\left(\begin{array}{lll}00 & 0 \\ 00 & 1 & 0\end{array}\right)$ (AND) The reonlt of AND operation so zero $\frac{0010}{0000}$ (AND) so line is parhally visible.
Slope of une $P_{1} P_{2}$ is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-1 / 3$
We have to find intessecton of live $P_{1} P_{2}$ with nght edge of windew l.e Pout P_{2}
let the intusecton pont be (x, y) here $x z 80$, value of

$$
\text { et the } \begin{aligned}
P_{2}\left(x_{2}, y_{2}\right) & =P_{2}(100,10) \\
m & =\frac{y-y_{2}}{x-x_{2}} \\
\frac{1}{3} & =\frac{y-10}{80-100} \\
\therefore y & =1666
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{y-y_{2}}{x-x_{2}} \\
& \frac{-1}{3}=\frac{y-10}{80-100} \quad, y-10=\frac{20}{3} \Rightarrow y=\frac{20}{3}+10=16 \ldots
\end{aligned}
$$

The mlersechen pount $P_{3}=(80,16,66)$ wondow, new So, aftar cleppuy line $P_{1} P_{2}$ apaun $P_{1}(70,20)$ and $P_{3} 180,16666$, une $s P_{1} P_{3}$ with cordinates $P_{1}(70,20)$ and P_{3}
Q. 5 a. Prove that simultaneous shearing in both directions (x and y directions) is not equal to the composition of pure shear along x-axis followed by pure shear along y-axis.

```
wow
soto 5(a)
sumuetoneous shearing (i)
\(s_{n}=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\).
\[
\begin{array}{ll}
s_{n}=\left(\begin{array}{lll}
1 & a \\
0 & 1
\end{array}\right) . \\
s_{x}=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) & m y=\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right) .
\end{array}
\]
\(\therefore\) shearing \(m x\) follow by \(y\)
\[
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)=\left(\begin{array}{cc}
1+a b & a \\
b & 1
\end{array}\right)
\]
u
\[
\neq\left(\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right)
\]
```

b. Find the transformation matrix that reduces the square ABCD, whose centre is at $(2,2)$, to half of its size, with centre still remaining at (2,2). The coordinates of the square $A B C D$ are $A(0,0), B(0,4)$, $C(4,4)$ and $D(4,0)$ Find the coordinates of new square.

$$
\begin{aligned}
& \text { ib) Square } A B C D=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \text { (2) } \\
& \begin{array}{c}
\text { Square } A B C D \text { reduced to half of ls sure: } \\
S_{x}=1 / 2, S y=1 / 2
\end{array} \\
& \text { So lecaling gallup o }\left(\begin{array}{cccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Aflame scaling we get } \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 4 & 1 \\
4 & 4 & 1 \\
4 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 1 \\
2 & 2 & 1 \\
2 & 0 & 1
\end{array}\right) \\
& \begin{array}{l}
\text { So coordinate of square } A B C D \text { are } \\
A=(0,0), \quad B=(0,2) \quad C=(2,2) \quad D=(2,0)
\end{array} \\
& \text { current centre } D(1,1) \text { but new conure of } A B C D \text {. } \\
& \text { tranalale } A B C D \text { by } T_{x}=1, T_{y}=1 \\
& \text { ale hanslaton we get } \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 1 \\
2 & 2 & 1 \\
2 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 1 \\
3 & 3 & 1 \\
3 & 1 & 1
\end{array}\right) \\
& A \rightarrow(1,1) \quad B \rightarrow(1,3) \quad C \rightarrow(3,3) \quad D \rightarrow(3,1)
\end{aligned}
$$

c. Define and explain Affine transformations.
(c) Sown: $5,2,2$ Page 248,249 (textbook)
Q.6a. Discuss and explain the taxonomy of projections.
b. Consider the polygon with vertices

$$
\begin{aligned}
& \mathbf{P}_{0}=(6,1,4) \\
& \mathbf{P}_{1}=(7,0,9) \\
& \mathbf{P}_{2}=(1,1,2)
\end{aligned}
$$

Find the normal to this polygon using Newell's Method.

$$
\begin{aligned}
& \text { ans Lect } \\
& ((7,0,9)-(6,1,4)) \times((1,1,2)-(6,1) 911
\end{aligned}
$$ demerits of Phong shading.

b. Write the pseudo code for the z-buffer algorithm for visible surface detection. What is the maximum number of objects that can be handled by z-buffer algorithm? Give two advantages and two disadvantages of z-buffer algorithm.

$7(b)$ Sector

Page
Q. 8 a. Discuss the different ways to define a region. Also differentiate between them. b.Define Aliasing. Discuss the different anti-aliasing techniques.

Sim 8(a) Section 10.8.1, Page 593-596 (Textbook) 8 (b) Seven 10.8 Page 609-612 (Textbook)
Q. 9 a. Explain the terms "Parametric continuity" and "Geometric continuity" in Bezier curves. (5)
b. Write any three properties of Bezier curve. What are the limitations of Bezier curves?

Soon $9(a) \in$ Page 633-34 Sechon 11.112 verve
(b) Just gre we repperhes
11.5 page $646-649$
c.A Bezier curve is to be drawn, given the control points $P_{1}(40,40), P_{2}(10,40), P_{3}(10,60), P_{4}(60,0)$. Calculate the coordinates of the points on the curve corresponding to the parameter $t=0.2,0.4,0.6$. Draw a graph sketch of the curve and show coordinates of various points on it.

```
q(C) Polynomial is given by
    \(P(t)=\sum_{k=1}^{n+1} P_{k} \theta E Z_{k}, n+1(t)\)
            \(=p_{1} B E Z_{1,4}(t)+P_{2} B E Z_{2, \mu}(t)+P_{3} B E Z_{314}(t)+P_{4} B E Z_{\text {wren }}(t)\)
        \(B E z_{1,4}(t)=(1-t)^{3}\)
        \(B E Z_{2,4}(t)=3 t(1-t)^{2}\)
        \(B E Z_{3,4}(t)=3 t^{2}(1-t)\)
        \(B E Z_{3,4}(t)=t^{3}\)
\(B E Z_{4,4}(t)=(1-t)^{3}+p_{2}^{3 t(1-t)^{2}+p_{3} 3 t^{2}(1-t)+p_{4} t^{3}}\)
\(P(t)=P_{1}(1)\)
    At \(t=0, P_{1}=(40,40)\)
        \(t=1, \quad P_{4}=(60,0)\)
        \(t=0.2=[25.76,41.6]\)
        \(t=0.4=[19.68,43.2]\)
        \(t=0.6=[22.72,40]\)
```


TEXT BOOK

I. Computer Graphics Using OpenGL, F.S. Hill, Jr., Second edition, PHI/Pearson Education, 2005 (TB-I)

