
 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 1 

 

 Q.2 a.  Define process. What are the states of Process? 
 

Answer: 

A process is an instance of a program running in a computer. It is close in meaning to task, a term 
used in some operating systems. In UNIX and some other operating systems, a process is started 
when a program is initiated (either by a user entering a shell command or by another program). Like 
a task, a process is a running program with which a particular set of data is associated so that the 
process can be kept track of. An application that is being shared by multiple users will generally 
have one process at some stage of execution for each user. 

A process goes through a series of discrete process states. 

• New State: The process being created.  
• Running State: A process is said to be running if it has the CPU, that is, process actually 

using the CPU at that particular instant.  
• Blocked (or waiting) State: A process is said to be blocked if it is waiting for some event to 

happen such that as an I/O completion before it can proceed. Note that a process is unable to 
run until some external event happens.  

• Ready State: A process is said to be ready if it use a CPU if one were available. A ready 
state process is run able but temporarily stopped running to let another process run.  

• Terminated state: The process has finished execution.  

  b. Explain the spooling technology in details. 
 
Answer: 

"Simultaneous peripheral operations online". a computer document or task list is to read it in and 
store it, usually on a hard disk or larger storage medium so that it can be printed or otherwise 
processed at a more convenient time (for example, when a printer is finished printing its current 
document). One can envision spooling as reeling a document or task list onto a spool of thread so 
that it can be unreeled at a more convenient time. 

The idea of spooling originated in early computer days when input was read in on punched cards for 
immediate printing (or processing and then immediately printing of the results). Since the computer 
operates at a much faster rate than input/output devices such as printers, it was more effective to 
store the read-in lines on a magnetic disk until they could be conveniently printed when the printer 
was free and the computer was less busy working on other tasks. Actually, a printer has a buffer but 
frequently the buffer isn't large enough to hold the entire document, requiring multiple I/O 
operations with the printer. 

The spooling of documents for printing and batch job requests still goes on in mainframe computers 
where many users share a pool of resources. On personal computers, your print jobs (for example, a 
Web page you want to print) are spooled to an output file on hard disk if your printer is already 
printing another file. 



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 2 

 

 
  c. Explain the following:  (4×2) 

  (i)   Distributed System 
(ii)  Parallel System 
(iii) Real Time System 

        (iv) Threads 
 
Answer: 

A distributed operating system is software over a collection of independent, networked, 
communicating, and physically separate computational nodes. Individual nodes each hold a specific 
software subset of the global aggregate operating system. Each subset is a composite of two distinct 
services provisionary. The first is a ubiquitous minimal kernel, or microkernel, that directly controls 
that node’s hardware. Second is a higher-level collection of system management components that 
coordinate the node's individual and collaborative activities. These components abstract microkernel 
functions and support user applications.  

The microkernel and the management components collection work together. They support the 
system’s goal of integrating multiple resources and processing functionality into an efficient and 
stable system.[4] This seamless integration of individual nodes into a global system is referred to as 
transparency, or single system image; describing the illusion provided to users of the global system’s 
appearance as a single computational entity. 

Parallel operating systems are used to interface multiple networked computers to complete tasks in 
parallel. The architecture of the software is often a UNIX-based platform, which allows it to 
coordinate distributed loads between multiple computers in a network. Parallel operating systems are 
able to use software to manage all of the different resources of the computers running in parallel, 
such as memory, caches, storage space, and processing power. Parallel operating systems also allow 
a user to directly interface with all of the computers in the network.  

A parallel operating system works by dividing sets of calculations into smaller parts and distributing 
them between the machines on a network. To facilitate communication between the processor cores 
and memory arrays, routing software has to either share its memory by assigning the same address 
space to all of the networked computers, or distribute its memory by assigning a different address 
space to each processing core. Sharing memory allows the operating system to run very quickly, but 
it is usually not as powerful. When using distributed shared memory, processors have access to both 
their own local memory and the memory of other processors; this distribution may slow the 
operating system, but it is often more flexible and efficient.  

A real-time operating system (RTOS) is an operating system (OS) intended to serve real-time 
application requests. It must be able to process data as it comes in, typically without buffering 
delays. Processing time requirements (including any OS delay) are measured in tenths of seconds or 
shorter. 

A key characteristic of an RTOS is the level of its consistency concerning the amount of time it 

http://en.wikipedia.org/wiki/Distributed_operating_system#cite_note-Fortier1986-4


 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 3 

 

takes to accept and complete an application's task; the variability is jitter. A hard real-time operating 
system has less jitter than a soft real-time operating system. The chief design goal is not high 
throughput, but rather a guarantee of a soft or hard performance category. An RTOS that can usually 
or generally meet a deadline is a soft real-time OS, but if it can meet a deadline deterministically it is 
a hard real-time OS. 

An RTOS has an advanced algorithm for scheduling. Scheduler flexibility enables a wider, 
computer-system orchestration of process priorities, but a real-time OS is more frequently dedicated 
to a narrow set of applications. Key factors in a real-time OS are minimal interrupt latency and 
minimal thread switching latency; a real-time OS is valued more for how quickly or how predictably 
it can respond than for the amount of work it can perform in a given period of time. 

 
Q.3a. Differentiate between preemptive and non-preemptive scheduling. 
 
Answer: 
Preemptive Scheduling is when a computer process is interrupted and the CPU's power is given 
over to another process with a higher priority. This type of scheduling occurs when a process 
switches from running state to a ready state or from a waiting state to a ready state. 
 
Non-Preemptive Scheduling allows the process to run through to completion before moving onto 
the next task. Example of the former Preemptive Scheduling -  if you launch a software application 
such as a text editor, the OS will assign the task to the processor, and will allocate disk space, 
memory and other resources to the program; the text editor program is now in a running state. If you 
decide to launch a second application and a new process is generated, various necessary resources 
are assigned to the new program, and the text editor is kept in a waiting or ready state until the new 
process has been executed. 

 

b.What do you mean by deadlock avoidance?  Write the Banker’s algorithm for multiple 
resources. 
 
Answer:  Page 391-92 of text book 
 
Q.4a. Explain and also write the code for Producer-Consumer problem using 

Semaphore. 
Answer: 

The producer-consumer problem is a classical example of a multi-process synchronization problem. 
The problem describes two processes, the producer and the consumer, who share a common, fixed-
size buffer used as a queue. The producer's job is to generate a piece of data, put it into the buffer 
and start again. At the same time, the consumer is consuming the data (i.e., removing it from the 
buffer) one piece at a time. The problem is to make sure that the producer won't try to add data into 
the buffer if it's full and that the consumer won't try to remove data from an empty buffer. 

The solution for the producer is to either go to sleep or discard data if the buffer is full. The next 



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 4 

 

time the consumer removes an item from the buffer, it notifies the producer, who starts to fill the 
buffer again. In the same way, the consumer can go to sleep if it finds the buffer to be empty. The 
next time the producer puts data into the buffer, it wakes up the sleeping consumer. The solution can 
be reached by means of inter-process communication, typically using semaphores. An inadequate 
solution could result in a deadlock where both processes are waiting to be awakened. The problem 
can also be generalized to have multiple producers and consumers. 

  
b.Describe the different mechanisms used to protect a file. 
 

Answer: 

Principles of Protection 

• The principle of least privilege dictates that programs, users, and systems be given just 
enough privileges to perform their tasks.  

• This ensures that failures do the least amount of harm and allow the least of harm to be 
done.  

• For example, if a program needs special privileges to perform a task, it is better to make it a 
SGID program with group ownership of "network" or "backup" or some other pseudo group, 
rather than SUID with root ownership. This limits the amount of damage that can occur if 
something goes wrong.  

• Typically each user is given their own account, and has only enough privilege to modify 
their own files.  

• The root account should not be used for normal day to day activities - The System 
Administrator should also have an ordinary account, and reserve use of the root account for 
only those tasks which need the root privileges  

   Domain of Protection 

• A computer can be viewed as a collection of processes and objects ( both HW & SW ).  
• The need to know principle states that a process should only have access to those objects it 

needs to accomplish its task, and furthermore only in the modes for which it needs access 
and only during the time frame when it needs access.  

• The modes available for a particular object may depend upon its type.  

  Domain Structure 

• A protection domain specifies the resources that a process may access.  
• Each domain defines a set of objects and the types of operations that may be invoked on 

each object.  
• An access right is the ability to execute an operation on an object.  
• A domain is defined as a set of < object, { access right set } > pairs, as shown below. Note 

that some domains may be disjoint while others overlap.  



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 5 

 

Q.5 a. What is memory allocation? Differentiate between contiguous and non contiguous 
memory allocation. Explain the concept of virtual memory. 

 
Answer: 
Contiguous memory allocation is a classical memory allocation model that assigns a process 
consecutive memory blocks (that is, memory blocks having consecutive addresses). 
 
Contiguous memory allocation is one of the oldest memory allocation schemes. When a process 
needs to execute, memory is requested by the process. The size of the process is compared with the 
amount of contiguous main memory available to execute the process. If sufficient contiguous 
memory is found, the process is allocated memory to start its execution. Otherwise, it is added to a 
queue of waiting processes until sufficient free contiguous memory is available. 
 
Virtual memory is a feature of an operating system that enables a process to use a memory (RAM) 
address space that is independent of other processes running in the same system, and use a space that 
is larger than the actual amount of RAM present, temporarily relegating some contents from RAM 
to a disk, with little or no overhead. 
In a system using virtual memory, the physical memory is divided into equally-sized pages. The 
memory addressed by a process is also divided into logical pages of the same size. When a process 
references a memory address, the memory manager fetches from disk the page that includes the 
referenced address, and places it in a vacant physical page in the RAM. Subsequent references 
within that logical page are routed to the physical page. When the process references an address 
from another logical page, it too is fetched into a vacant physical page and becomes the target of 
subsequent similar references. 
 
 
b.Compare and contrast paging with segmentation. In particular, describe issues related to 
fragmentation.  (8) 
    

Answer: 
Paging – Computer memory is divided into small partitions that are all the same size and referred to 
as, page frames. Then when a process is loaded it gets divided into pages which are the same size as 
those previous frames. The process pages are then loaded into the frames. 
 
Segmentation – Computer memory is allocated in various sizes (segments) depending on the need 
for address space by the process. These segments may be individually protected or shared between 
processes. Commonly you will see what are called “Segmentation Faults” in programs, this is 
because the data that’s is about to be read or written is outside the permitted address space of that 
process. 
 
So now we can distinguish the differences and look at a comparison between the two: 
 
Paging: 
Transparent to programmer (system allocates memory) 
No separate protection 
No separate compiling 
No shared code 



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 6 

 

 
Segmentation: 
Involves programmer (allocates memory to specific function inside code) 
Separate compiling 
Separate protection 

Performance degradation due to fragmentation 

Memory fragmentation is one of the most severe problems faced by system managers. Over time, it 
leads to degradation of system performance. Eventually, memory fragmentation may lead to 
complete loss of free memory. 

Memory fragmentation is a kernel programming level problem. During real-time computing of 
applications, fragmentation levels can reach as high as 99%, and may lead to system crashes or other 
instabilities. This type of system crash can be difficult to avoid, as it is impossible to anticipate the 
critical rise in levels of memory fragmentation. 

 
Q.6a. What are the benefits of using "language processors"? (5) 
 
Answer: 
Natural language processing (NLP) is a field of computer science and linguistics concerned with the 
interactions between computers and human (natural) languages; it began as a branch of artificial 
intelligence. In theory, natural language processing is a very attractive method of human–computer 
interaction. Natural language understanding is sometimes referred to as an AI-complete problem 
because it seems to require extensive knowledge about the outside world and the ability to 
manipulate it. 
 
Whether NLP is distinct from, or identical to, the field of computational linguistics is a matter of 
perspective. The Association for Computational Linguistics defines the latter as focusing on the 
theoretical aspects of NLP. On the other hand, the open-access journal "Computational Linguistics", 
styles itself as "the longest running publication devoted exclusively to the design and analysis of 
natural language processing systems" 
 
b.What do you understand by the term System Software?  
 
Answer: 
System software are general programs designed for performing tasks such as controlling all 
operations required to move data into and out of the computer. It communicates with printers, card 
reader, disk, tapes etc. monitor the use of various hardware like memory, CPU etc. Also system 
software are essential for the development of applications software. 
 
System software allows application packages to be run on the computer with less time and effort. 
It is not possible to run application software without system software. Development of 
system software is a complex task and it requires extensive knowledge of computer 
technology. Due to its complexity it is not developed in house. 



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 7 

 

 
c. What are the various language processing activities in the domain of system software? 
What do you understand by cross-compilation? 
 
Answer: 
The language processing activities are  
a) Program Generation Activities: 
1) Program generator is a software, which accepts the specification of a program to be 

generated; and produces a program in target language  
2) Initially the semantic gap between source language domain and target language domain. 

But, now with the program generation activities, the semantic gap exists between source 
language domain and program generator domain. 

3) This is so because, the generator domain is close to source language domain, and it is easy for 
the designer/programmer to write the specification of the program to be generated. 

4) This arrangement also reduces the testing effort. This is so because to test an application 
generated by the generator, it is necessary to only verify the correctness of specification that is 
input to the generator. 

b) Program Execution Activities: 
The execution of program is segregated in two activities  
These two activities are: 
1) Program Translation Activities. 
2) Program Interpretation Activities. 
 
 
Q.7  a. Explain the difference between scanning and parsing. 
 
Answer: 
Parsing is the process of analyzing a text, made of a sequence of tokens, to determine its 
grammatical structure with respect to a given formal grammar. Parsing is also known as syntactic 
analysis and parser is used for analyzing a text. The task of the parser is essentially to determine if 
and how the input can be derived from the start symbol of the grammar. The input is a valid input 
with respect to a given formal grammar if it can be derived from the start symbol of the grammar. 
A parser is one of the components in an interpreter or compiler, which checks for correct syntax and 
builds a data structure implicit in the input tokens. 
 
A scanner is a device that optically scans images, printed text, handwriting, or an object, and 
converts it to a digital image. Common examples found in offices are variations of the desktop (or 
flatbed) scanner where the document is placed on a glass window for scanning. 
  
b.Explain the following: 
(i)   Macro definition  
(ii)  Macro call 
 
Answer:  Page 132, 133 of text book 



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 8 

 

 
c. Briefly describe why programming language influence the linking requirements of 
programs? 
 
Answer:  Page 230 of text book 
 
Q.8  a. Mention some advantages of assembly language over machine language.  
 
Answer: 
Stages from Source to Executable 
Compilation: source code  
Linking: many relocatable binaries  
Loading: relocatable  
Execution: control is transferred to the first instruction of the program  
 
At compile time, absolute addresses of variables and statement labels are not known.  
In static languages, absolute addresses are bound at load time (LT).  
In block-structured languages, bindings can change at run time (RT).  
Phases of the Compilation Process 
Lexical analysis (scanning): the source text is broken into tokens.  
Syntactic analysis (parsing): tokens are combined to form syntactic structures, typically represented 
by a parse tree.  
The parser may be replaced by a syntax-directed editor, which directly generates a parse tree as a 
product of editing.  
Semantic analysis: intermediate code is generated for each syntactic structure.  
Type checking is performed in this phase. Complicated features such as generic declarations and 
operator over loading are also processed.  
Machine-independent optimization: intermediate code is optimized to improve efficiency.  
Code generation: intermediate code is translated to relocatable object code for the target machine.  
Machine-dependent optimization: the machine code is optimized. 
 
 
            b. What are assembler directives in assembly languages? Illustrate with an 

example the importance of assembler directives.   
 
Answer: 
The compilation can be optimized to the targeted CPU and the operating system model where the 
application runs. For example JIT can choose SSE2 CPU instructions when it detects that the CPU 
supports them. To obtain this level of optimization specificity with a static compiler, one must either 
compile a binary for each intended platform/architecture, or else include multiple versions of 
portions of the code within a single binary.  
 
The system is able to collect statistics about how the program is actually running in the environment 
it is in, and it can rearrange and recompile for optimum performance. However, some static 
compilers can also take profile information as input.  
 
The system can do global code optimizations (e.g. inlining of library functions) without losing the 



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 9 

 

advantages of dynamic linking and without the overheads inherent to static compilers and linkers. 
Specifically, when doing global inline substitutions, a static compilation process may need run-time 
checks and ensure that a virtual call would occur if the actual class of the object overrides the inlined 
method, and boundary condition checks on array accesses may need to be processed within loops. 
With just-in-time compilation in many cases this processing can be moved out of loops, often giving 
large increases of speed.  
 
Although this is possible with statically compiled garbage collected languages, a bytecode system 
can more easily rearrange executed code for better cache utilization.  
 
 
        c. Explain the differences between two pass and single pass translation. 
 
Answer:  Page 94 of text book 
 
 
Q.9  a. What are the major stages in the process of compilation? 
 
Answer: 
Code optimization is the optional phase designed to improve the intermediate code so that the 
Ultimate object program runs faster or takes less space. Code optimization in compilers aims at 
improving the execution efficiency of a program by eliminating redundancies and by rearranging the 
computations in the program without affecting the real meaning of the program. 
Scope – First optimization seeks to improve a program rather than the algorithm used in the 
program. Thus replacement of algorithm by a more efficient algorithm is beyond the scope of 
optimization. Also efficient code generation for a specific target machine also lies outside its scope. 
The structure of program and the manner in which data is defined and used in it provide vital clues 
for optimization. 
Optimization transformations are classified into local and global transformations. 
 
 
  b. Write short note on code optimization. 
 
Answer: 
The analysis and synthesis phases of a compiler are: 
Analysis Phase: Breaks the source program into constituent pieces and creates intermediate 
representation. The analysis part can be divided along the following phases: 
1. Lexical Analysis- The program is considered as a unique sequence of characters. 
The Lexical Analyzer reads the program from left-to-right and sequence of characters is grouped 
into tokens–lexical units with a collective meaning. 
2. Syntax Analysis- The Syntactic Analysis is also called Parsing. Tokens are grouped into 
grammatical phrases represented by a Parse Tree, which gives a hierarchical structure to the source 
program. 
3. Semantic Analysis- The Semantic Analysis phase checks the program for semantic errors (Type 
Checking) and gathers type information for the successive phases. Type 
Checking check types of operands; No real number as index for array; etc. 
Synthesis Phase: Generates the target program from the intermediate representation. 



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 10 

 

 
 

TEXTBOOK 
 
1.  Systems Programming and Operating Systems, D. M. Dhamdhere, Tata McGraw-Hill, 

Second Revised Edition, 2005 (TB-I) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The synthesis part can be divided along the following phases: 
1. Intermediate Code Generator- An intermediate code is generated as a program for an abstract 
machine. The intermediate code should be easy to translate into the target program. 
2. Code Optimizer- This phase attempts to improve the intermediate code so that faster-running 
machine code can be obtained. Different compilers adopt different optimization techniques. 
3. Code Generator- This phase generates the target code consisting of assembly code. 
Here 
1. Memory locations are selected for each variable; 
2. Instructions are translated into a sequence of assembly instructions; 
3. Variables and intermediate results are assigned to memory registers. 
    
  c. Compare and contrast the following parameter passing mechanisms in terms of 

execution efficiency and power to produce side effects: 
   (i)    call by value-result 
   (ii)   call by reference 
   (iii)  call by name  
 
Answer:  Page 196-198 of text book 
  



 
AC59/AT59                 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2014 

 
 
 

 
© IETE                                                                                                                                 11 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Answer:
	Principles of Protection
	   Domain of Protection
	  Domain Structure


