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Q.2  a.  What are the different performance measures used to represent a 
computer system’s performance? 

 

Answer:  

Metrics are criteria to compare the performances of a system. In general, the metrics are 
related to speed, accuracy, reliability and availability of services. The basic characteristics of 
a computer system that we typically need 
to measure are: 

o a count of how many times an event occurs, 
o the duration of some time interval, and 
o the size of some parameter. 

 
From these types of measured values, we can derive the actual value that we wish to use to 
describe the system: the performance metric. 
  

• Reliability A system A always outperforms a system B , the performance metric 
indicates that A always outperforms B. 

 
• Repeatability The same value of the metric is measured each time the same 

experiments are performed. 
 

• Consistency Units of the metrics and its precise definition are the same across 
different systems and different configurations of the same system. 

 
• Linearity The value of the metric should be linearly proportional to the actual 

performance of the machine. 
 

• Easiness of measurement If a metric is hard to measure, it is unlikely anyone will 
actually use it. Moreover it is more likely to be incorrectly determined. Independence 
Metrics should not be defined to favor particular systems. 

 
• Time between the start and the end of an operation. Also called running time, elapsed 

time, wall-clock time, response time, latency, execution time, ... Most straightforward 
measure: “my program takes 12.5s on  Pentium 3.5GHz” Can be normalized to some 
reference time .Must be measured on a “dedicated” machine 

Other parameters are: 
 
MIPS Millions of instructions / sec  
But Instructions Set Architectures are not equivalent 
1 CISC instruction = many RISC instructions 
 
Programs use different instruction mixes 
MFlops Millions of floating point operations /sec 
=---very popular, but often misleading 
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e.g., A high MFlops rate in a stupid algorithm could have poor application 
performance 
Application-specific 

• Millions of frames rendered per second 
• Millions of amino-acid compared per second 
• Millions of HTTP requests served per seconds 

 
Application-specific metrics are often preferable and others may be misleading 
 
This is often the way in which people say that a computer Is better than another. More 
instruction per seconds for higher clock rate. Faces the same problems as MIPS 
 
  b.  Explain Big-endian and Little-endian byte-addresses assignment with 

example.   
 

Answer: Refer Page No 35 from Text Book 

 
  c. Describe in brief the different generations of computer. 
 

Answer: Refer Page No 19 from Text Book 
 
 Q.3 a. Bring out the four key differences between subroutine and interrupt service 

routine. 
 

Answer:  

Subroutine runs when you call it. ISR runs whenever a certain signal occurs. (The signal can 
be generated by software or hardware.) The big difference is that you know where the 
subroutine runs (because you call it). But you do not know when the ISR will be executed. 
You code may run normally when a hardware interrupt occurs and your program jumps to the 
ISR. This can happen anywhere in your code (in between two statements or even in the 
middle of a complete statement, remember a statement is compiled into multiple assembly 
instructions). 
 
Therefore, cares must be taken when ISR accesses global variables. Race condition may 
occur if ISR and a normal thread touch the same global variable at the same time. 
 
The interrupt service routine (on the 14-bit core there is only one) is just like a subroutine. 
The difference is that when you call a subroutine, you call it when you decide, and you 
understand completely what will be changed by the subroutine, and your code can be 
prepared for, even welcome, those changes. 
 
But the interrupt service routine gets called when you least expect it, kind of like that 
unwelcome call from the mother in law. No matter what you are doing you are 
unceremoniously ripped out of it to go answer the phone. Because of this, it becomes the 
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responsibility of the interrupt service routine to carefully put back anything it may have 
disturbed. This is probably the trickiest part of interrupt handling, not because it is so 
difficult, but because the bugs a mistake can introduce will be terribly difficult to sort out. On 
the other hand, by not having to poll for certain types of events, you code can sometimes be 
greatly simplified. 
 
 
  b. Define addressing mode.  With the help of example explain different 

addressing modes. 
 

Answer:  

 The Displacement Only Addressing Mode 
 

The most common addressing mode, and the one that's easiest to understand, is the 
displacement-only (or direct) addressing mode. The displacement-only addressing mode 
consists of a 16 bit constant that specifies the address of the target location. The instruction 
mov al,ds:[8088h] loads the al register with a copy of the byte at memory location 8088h. 
Likewise, the instruction mov ds:[1234h],dl stores the value in the dl register to memory 
location 1234h: 

 
The displacement-only addressing mode is perfect for accessing simple variables. Of course, 
you'd probably prefer using names like "I" or "J" rather than "DS:[1234h]" or "DS:[8088h]". 
Well, fear not, you'll soon see it's possible to do just that. 
 
Intel named this the displacement-only addressing mode because a 16 bit constant 
(displacement) follows the mov opcode in memory. In that respect it is quite similar to the 
direct addressing mode on the x86 processors (see the previous chapter). There are some 
minor differences, however. First of all, a displacement is exactly that- some distance from 
some other point. On the x86, a direct address can be thought of as a displacement from 
address zero. On the 80x86 processors, this displacement is an offset from the beginning of a 
segment (the data segment in this example). Don't worry if this doesn't make a lot of sense 
right now. You'll get an opportunity to study segments to your heart's content a little later in 
this chapter. For now, you can think of the displacement-only addressing mode as a direct 
addressing mode. The examples in this chapter will typically access bytes in memory. Don't 
forget, however, that you can also access words on the 8086 processors : 
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By default, all displacement-only values provide offsets into the data segment. If you want to 
provide an offset into a different segment, you must use a segment override prefix before your 
address. For example, to access location 1234h in the extra segment (es) you would use an 
instruction of the form mov ax,es:[1234h]. Likewise, to access this location in the code 
segment you would use the instruction mov ax, cs:[1234h]. The ds: prefix in the previous 
examples is not a segment override. The CPU uses the data segment register by default. These 
specific examples require ds: because of MASM's syntactical limitations. 

1.2.2 The Register Indirect Addressing Modes 
 

The 80x86 CPUs let you access memory indirectly through a register using the register 
indirect addressing modes. There are four forms of this addressing mode on the 8086, best 
demonstrated by the following instructions:  
                mov     al, [bx] 
                mov     al, [bp] 
                mov     al, [si] 
                mov     al, [di] 
As with the x86 [bx] addressing mode, these four addressing modes reference the byte at the 
offset found in the bx, bp, si, or di register, respectively. The [bx], [si], and [di] 
modes use the ds segment by default. The [bp] addressing mode uses the stack segment 
(ss) by default. 
 
You can use the segment override prefix symbols if you wish to access data in different 
segments. The following instructions demonstrate the use of these overrides:  
                mov     al, cs:[bx] 
                mov     al, ds:[bp] 
                mov     al, ss:[si] 
                mov     al, es:[di] 
Intel refers to [bx] and [bp] as base addressing modes and bx and bp as base registers (in 
fact, bp stands for base pointer). Intel refers to the [si] and [di] addressing modes as 
indexed addressing modes (si stands for source index, di stands for destination index). 
However, these addressing modes are functionally equivalent. This text will call these forms 
register indirect modes to be consistent. 
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Note: the [si] and [di] addressing modes work exactly the same way, just substitute si 
and di for bx above. 

1.2.3 Indexed Addressing Modes 
 

The indexed addressing modes use the following syntax:  
                mov     al, disp[bx] 
                mov     al, disp[bp] 
                mov     al, disp[si] 
                mov     al, disp[di] 
If bx contains 1000h, then the instruction mov cl,20h[bx] will load cl from memory 
location ds:1020h. Likewise, if bp contains 2020h, mov dh,1000h[bp] will load dh from 
location ss:3020. 
 
The offsets generated by these addressing modes are the sum of the constant and the specified 
register. The addressing modes involving bx, si, and di all use the data segment, the 
disp[bp] addressing mode uses the stack segment by default. As with the register indirect 
addressing modes, you can use the segment override prefixes to specify a different segment:  
                mov     al, ss:disp[bx] 
                mov     al, es:disp[bp] 
                mov     al, cs:disp[si] 
                mov     al, ss:disp[di] 

 
 
 

 
You may substitute si or di in the figure above to obtain the [si+disp] and [di+disp] 
addressing modes. 
 
Note that Intel still refers to these addressing modes as based addressing and indexed 
addressing. Intel's literature does not differentiate between these modes with or without the 
constant. If you look at how the hardware works, this is a reasonable definition. From the 
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programmer's point of view, however, these addressing modes are useful for entirely different 
things. Which is why this text uses different terms to describe them. Unfortunately, there is 
very little consensus on the use of these terms in the 80x86 world.  

Based Indexed Addressing Modes 
The based indexed addressing modes are simply combinations of the register indirect 
addressing modes. These addressing modes form the offset by adding together a base register 
(bx or bp) and an index register (si or di). The allowable forms for these addressing modes 
are  
                mov     al, [bx][si] 
                mov     al, [bx][di] 
                mov     al, [bp][si] 
                mov     al, [bp][di] 
Suppose that bx contains 1000h and si contains 880h. Then the instruction  
  mov al,[bx][si]  
would load al from location DS:1880h. Likewise, if bp contains 1598h and di contains 1004, 
mov ax,[bp+di] will load the 16 bits in ax from locations SS:259C and SS:259D. 
 
The addressing modes that do not involve bp use the data segment by default. Those that have 
bp as an operand use the stack segment by default. 

 
You substitute di in the figure above to obtain the [bx+di] addressing mode. 

 
You substitute di in the figure above for the [bp+di] addressing mode. 

1.2.5 Based Indexed Plus Displacement Addressing Mode 
These addressing modes are a slight modification of the base/indexed addressing modes with 
the addition of an eight bit or sixteen bit constant. The following are some examples of these 
addressing modes: 

 
                mov     al, disp[bx][si] 
                mov     al, disp[bx+di] 
                mov     al, [bp+si+disp] 
                mov     al, [bp][di][disp] 
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You may substitute di in the figure above to produce the [bx+di+disp] addressing mode. 

 
You may substitute di in the figure above to produce the [bp+di+disp] addressing mode. 
 
  c. Explain stack organisation used in processors. Differentiate between a 

register stack and a memory stack. 
 

Answer:  

Stack is a storage structure that stores information in such a way that the last item stored is the 
first item retrieved. It is based on the principle of LIFO (Last-in-first-out). The stack in digital 
computers is a group of memory locations with a register that holds the address of top of 
element. This register that holds the address of top of element of the stack is called Stack 
Pointer. 
Stack Operations 
The two operations of a stack are: 

1. Push:        Inserts an item on top of stack. 
2. Pop:          Deletes an item from top of stack. 

Implementation of Stack  
In digital computers, stack can be implemented in two ways: 

1. Register Stack 
2. Memory Stack 

Register Stack  
A stack can be organized as a collection of finite number of registers that are used to store 
temporary information during the execution of a program. The stack pointer (SP) is a register 
that holds the address of top of element of the stack. 
Memory Stack 
 
A stack can be implemented in a random access memory (RAM) attached to a CPU. The 
implementation of a stack in the CPU is done by assigning a portion of memory to a stack 
operation and using a processor register as a stack pointer. The starting memory location of 
the stack is specified by the processor register as stack pointer. 
 
 Q.4 a. Explain in brief with the help of a diagram the working of daisy chaining 

with multiple priority levels and multiple devices in each level.  
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Answer:  

 

 
 
  b. Define and explain the following (Any TWO): (2×4) 
   i.    Interrupt 
   ii.   Vectored Interrupt 
   iii.  Interrupt nesting 
   iv.  An exception and its two examples 
 

Answer:  

 Q.5 a. What are the different kinds of I/O communication techniques? Compare 
and contrast. In the above techniques, which is the most efficient? Justify 
your answer. 

 

Answer:  

• Devices communicate with the computer via signals sent over wires or through the air. 
• Devices connect with the computer via ports, e.g. a serial or parallel port. 
• A common set of wires connecting multiple devices is termed a bus.  

o Buses include rigid protocols for the types of messages that can be sent across 
the bus and the procedures for resolving contention issues. 

o Figure 13.1 below illustrates three of the four bus types commonly found in a 
modern PC:  

1. The PCI bus connects high-speed high-bandwidth devices to the 
memory subsystem ( and the CPU. ) 

2. The expansion bus connects slower low-bandwidth devices, which 
typically deliver data one character at a time ( with buffering. ) 

3. The SCSI bus connects a number of SCSI devices to a common SCSI 
controller. 

4. A daisy-chain bus, ( not shown) is when a string of devices is 
connected to each other like beads on a chain, and only one of the 
devices is directly connected to the host.  
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• One way of communicating with devices is through registers associated with each 
port. Registers may be one to four bytes in size, and may typically include ( a subset 
of ) the following four:  

1. The data-in register is read by the host to get input from the device. 
2. The data-out register is written by the host to send output. 
3. The status register has bits read by the host to ascertain the status of the 

device, such as idle, ready for input, busy, error, transaction complete, etc. 
4. The control register has bits written by the host to issue commands or to 

change settings of the device such as parity checking, word length, or full- 
versus half-duplex operation. 

• Figure 13.2 shows some of the most common I/O port address ranges.  
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• Another technique for communicating with devices is memory-mapped I/O.  
o In this case a certain portion of the processor's address space is mapped to the 

device, and communications occur by reading and writing directly to/from 
those memory areas. 

o Memory-mapped I/O is suitable for devices which must move large quantities 
of data quickly, such as graphics cards. 

o Memory-mapped I/O can be used either instead of or more often in 
combination with traditional registers. For example, graphics cards still use 
registers for control information such as setting the video mode. 

o A potential problem exists with memory-mapped I/O, if a process is allowed to 
write directly to the address space used by a memory-mapped I/O device. 

o ( Note: Memory-mapped I/O is not the same thing as direct memory access, 
DMA. See section 13.2.3 below. )  

Polling 

• One simple means of device handshaking involves polling:  
1. The host repeatedly checks the busy bit on the device until it becomes clear. 
2. The host writes a byte of data into the data-out register, and sets the write bit in 

the command register ( in either order. ) 
3. The host sets the command ready bit in the command register to notify the 

device of the pending command. 
4. When the device controller sees the command-ready bit set, it first sets the 

busy bit.  
5. Then the device controller reads the command register, sees the write bit set, 

reads the byte of data from the data-out register, and outputs the byte of data.  
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6. The device controller then clears the error bit in the status register, the 
command-ready bit, and finally clears the busy bit, signaling the completion of 
the operation. 

• Polling can be very fast and efficient, if both the device and the controller are fast and 
if there is significant data to transfer. It becomes inefficient, however, if the host must 
wait a long time in the busy loop waiting for the device, or if frequent checks need to 
be made for data that is infrequently there.  

Interrupts 

• Interrupts allow devices to notify the CPU when they have data to transfer or when an 
operation is complete, allowing the CPU to perform other duties when no I/O transfers 
need its immediate attention. 

• The CPU has an interrupt-request line that is sensed after every instruction.  
o A device's controller raises an interrupt by asserting a signal on the interrupt 

request line. 
o The CPU then performs a state save, and transfers control to the interrupt 

handler routine at a fixed address in memory. ( The CPU catches the interrupt 
and dispatches the interrupt handler. )  

o The interrupt handler determines the cause of the interrupt, performs the 
necessary processing, performs a state restore, and executes a return from 
interrupt instruction to return control to the CPU. ( The interrupt handler 
clears the interrupt by servicing the device. )  

 ( Note that the state restored does not need to be the same state as the 
one that was saved when the interrupt went off. See below for an 
example involving time-slicing. )  

• Figure 13.3 illustrates the interrupt-driven I/O procedure:  
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• The above description is adequate for simple interrupt-driven I/O, but there are three 
needs in modern computing which complicate the picture:  

1. The need to defer interrupt handling during critical processing, 
2. The need to determine which interrupt handler to invoke, without having to 

poll all devices to see which one needs attention, and  
3. The need for multi-level interrupts, so the system can differentiate between 

high- and low-priority interrupts for proper response.  
• These issues are handled in modern computer architectures with interrupt-controller 

hardware.  
o Most CPUs now have two interrupt-request lines: One that is non-maskable 

for critical error conditions and one that is maskable, that the CPU can 
temporarily ignore during critical processing.  

o The interrupt mechanism accepts an address, which is usually one of a small 
set of numbers for an offset into a table called the interrupt vector. This table 
( usually located at physical address zero ? ) holds the addresses of routines 
prepared to process specific interrupts. 
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o The number of possible interrupt handlers still exceeds the range of defined 
interrupt numbers, so multiple handlers can be interrupt chained. Effectively 
the addresses held in the interrupt vectors are the head pointers for linked-lists 
of interrupt handlers.  

o Figure 13.4 shows the Intel Pentium interrupt vector. Interrupts 0 to 31 are 
non-maskable and reserved for serious hardware and other errors. Maskable 
interrupts, including normal device I/O interrupts begin at interrupt 32. 

o Modern interrupt hardware also supports interrupt priority levels, allowing 
systems to mask off only lower-priority interrupts while servicing a high-
priority interrupt, or conversely to allow a high-priority signal to interrupt the 
processing of a low-priority one.  

 

• At boot time the system determines which devices are present, and loads the 
appropriate handler addresses into the interrupt table. 

• During operation, devices signal errors or the completion of commands via interrupts. 
• Exceptions, such as dividing by zero, invalid memory accesses, or attempts to access 

kernel mode instructions can be signaled via interrupts. 
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• Time slicing and context switches can also be implemented using the interrupt 
mechanism.  

o The scheduler sets a hardware timer before transferring control over to a user 
process. 

o When the timer raises the interrupt request line, the CPU performs a state-save, 
and transfers control over to the proper interrupt handler, which in turn runs 
the scheduler. 

o The scheduler does a state-restore of a different process before resetting the 
timer and issuing the return-from-interrupt instruction. 

• A similar example involves the paging system for virtual memory - A page fault 
causes an interrupt, which in turn issues an I/O request and a context switch as 
described above, moving the interrupted process into the wait queue and selecting a 
different process to run. When the I/O request has completed ( i.e. when the requested 
page has been loaded up into physical memory ), then the device interrupts, and the 
interrupt handler moves the process from the wait queue into the ready queue, ( or 
depending on scheduling algorithms and policies, may go ahead and context switch it 
back onto the CPU. ) 

• System calls are implemented via software interrupts, a.k.a. traps. When a ( library ) 
program needs work performed in kernel mode, it sets command information and 
possibly data addresses in certain registers, and then raises a software interrupt. ( E.g. 
21 hex in DOS. ) The system does a state save and then calls on the proper interrupt 
handler to process the request in kernel mode. Software interrupts generally have low 
priority, as they are not as urgent as devices with limited buffering space. 

• Interrupts are also used to control kernel operations, and to schedule activities for 
optimal performance. For example, the completion of a disk read operation involves 
two interrupts:  

o A high-priority interrupt acknowledges the device completion, and issues the 
next disk request so that the hardware does not sit idle. 

o A lower-priority interrupt transfers the data from the kernel memory space to 
the user space, and then transfers the process from the waiting queue to the 
ready queue. 

• The Solaris OS uses a multi-threaded kernel and priority threads to assign different 
threads to different interrupt handlers. This allows for the "simultaneous" handling of 
multiple interrupts, and the assurance that high-priority interrupts will take precedence 
over low-priority ones and over user processes.  

Direct Memory Access 

• For devices that transfer large quantities of data ( such as disk controllers ), it is 
wasteful to tie up the CPU transferring data in and out of registers one byte at a time. 

• Instead this work can be off-loaded to a special processor, known as the Direct 
Memory Access, DMA, Controller. 

• The host issues a command to the DMA controller, indicating the location where the 
data is located, the location where the data is to be transferred to, and the number of 
bytes of data to transfer. The DMA controller handles the data transfer, and then 
interrupts the CPU when the transfer is complete. 
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• A simple DMA controller is a standard component in modern PCs, and many bus-
mastering I/O cards contain their own DMA hardware. 

• Handshaking between DMA controllers and their devices is accomplished through 
two wires called the DMA-request and DMA-acknowledge wires. 

• While the DMA transfer is going on the CPU does not have access to the PCI bus ( 
including main memory ), but it does have access to its internal registers and primary 
and secondary caches.  

• DMA can be done in terms of either physical addresses or virtual addresses that are 
mapped to physical addresses. The latter approach is known as Direct Virtual 
Memory Access, DVMA, and allows direct data transfer from one memory-mapped 
device to another without using the main memory chips. 

• Direct DMA access by user processes can speed up operations, but is generally 
forbidden by modern systems for security and protection reasons. ( I.e. DMA is a 
kernel-mode operation. ) 

• Figure 13.5 below illustrates the DMA process.  

 

Users request data using file names, which must ultimately be mapped to specific blocks of 
data from a specific device managed by a specific device driver. 

• DOS uses the colon separator to specify a particular device ( e.g. C:, LPT:, etc. ) 
• UNIX uses a mount table to map filename prefixes ( e.g. /usr ) to specific mounted 

devices. Where multiple entries in the mount table match different prefixes of the 
filename the one that matches the longest prefix is chosen. ( e.g. /usr/home instead of 
/usr where both exist in the mount table and both match the desired file. ) 

• UNIX uses special device files, usually located in /dev, to represent and access 
physical devices directly.  

o Each device file has a major and minor number associated with it, stored and 
displayed where the file size would normally go. 

o The major number is an index into a table of device drivers, and indicates 
which device driver handles this device. ( E.g. the disk drive handler. ) 

o The minor number is a parameter passed to the device driver, and indicates 
which specific device is to be accessed, out of the many which may be handled 
by a particular device driver. ( e.g. a particular disk drive or partition. ) 

• A series of lookup tables and mappings makes the access of different devices flexible, 
and somewhat transparent to users. 

• Figure 13.13 illustrates the steps taken to process a ( blocking ) read request:  
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  b.  Draw the block diagram of universal bus (USB) structure connected to the 

host computer. Briefly explain all fields of packets that are used for 
communication between a host and a device connected to an USB port. 

 

Answer:  

The design architecture of USB is asymmetrical in its topology, consisting of a host, a 
multitude of downstream USB ports, and multiple peripheral devices connected in a tiered-
star topology. Additional USB hubs may be included in the tiers, allowing branching into a 
tree structure with up to five tier levels. A USB host may implement multiple host controllers 
and each host controller may provide one or more USB ports. Up to 127 devices, including 
hub devices if present, may be connected to a single host controller.[18][19] 
USB devices are linked in series through hubs. One hub is known as the root hub which is 
built into the host controller. 
A physical USB device may consist of several logical sub-devices that are referred to as 
device functions. A single device may provide several functions, for example, a webcam 
(video device function) with a built-in microphone (audio device function). This kind of 
device is called composite device. An alternative for this is compound device in which each 
logical device is assigned a distinctive address by the host and all logical devices are 
connected to a built-in hub to which the physical USB wire is connected. 

 
 

USB endpoints actually reside on the connected device: the channels to the host are referred 
to as pipes 
USB device communication is based on pipes (logical channels). A pipe is a connection from 
the host controller to a logical entity, found on a device, and named an endpoint. Because 
pipes correspond 1-to-1 to endpoints, the terms are sometimes used interchangeably. A USB 
device can have up to 32 endpoints, though USB devices seldom have this many endpoints. 
An endpoint is built into the USB device by the manufacturer and therefore exists 
permanently, while a pipe may be opened and closed. 
There are two types of pipes: stream and message pipes. A message pipe is bi-directional and 
is used for control transfers. Message pipes are typically used for short, simple commands to 
the device, and a status response, used, for example, by the bus control pipe number 0. A 
stream pipe is a uni-directional pipe connected to a uni-directional endpoint that transfers data 
using an isochronous, interrupt, or bulk transfer: 

http://en.wikipedia.org/wiki/Asymmetry
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Peripheral_device
http://en.wikipedia.org/wiki/Star_topology
http://en.wikipedia.org/wiki/USB_hub
http://en.wikipedia.org/wiki/Universal_Serial_Bus#cite_note-18
http://en.wikipedia.org/wiki/Universal_Serial_Bus#cite_note-18
http://en.wikipedia.org/wiki/Webcam
http://en.wikipedia.org/wiki/Communication_endpoint
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• isochronous transfers: at some guaranteed data rate (often, but not necessarily, as fast 
as possible) but with possible data loss (e.g., realtime audio or video). 

• interrupt transfers: devices that need guaranteed quick responses (bounded latency) 
(e.g., pointing devices and keyboards). 

• bulk transfers: large sporadic transfers using all remaining available bandwidth, but 
with no guarantees on bandwidth or latency (e.g., file transfers). 

An endpoint of a pipe is addressable with a tuple (device_address, endpoint_number) as 
specified in a TOKEN packet that the host sends when it wants to start a data transfer session. 
If the direction of the data transfer is from the host to the endpoint, an OUT packet (a 
specialization of a TOKEN packet) having the desired device address and endpoint number is 
sent by the host. If the direction of the data transfer is from the device to the host, the host 
sends an IN packet instead. If the destination endpoint is a uni-directional endpoint whose 
manufacturer's designated direction does not match the TOKEN packet (e.g., the 
manufacturer's designated direction is IN while the TOKEN packet is an OUT packet), the 
TOKEN packet will be ignored. Otherwise, it will be accepted and the data transaction can 
start. A bi-directional endpoint, on the other hand, accepts both IN and OUT packets. 

 
 

Two USB standard A receptacles on the front of a computer 
Endpoints are grouped into interfaces and each interface is associated with a single device 
function. An exception to this is endpoint zero, which is used for device configuration and 
which is not associated with any interface. A single device function composed of 
independently controlled interfaces is called a composite device. A composite device only has 
a single device address because the host only assigns a device address to a function. 
When a USB device is first connected to a USB host, the USB device enumeration process is 
started. The enumeration starts by sending a reset signal to the USB device. The data rate of 
the USB device is determined during the reset signaling. After reset, the USB device's 
information is read by the host and the device is assigned a unique 7-bit address. If the device 
is supported by the host, the device drivers needed for communicating with the device are 
loaded and the device is set to a configured state. If the USB host is restarted, the enumeration 
process is repeated for all connected devices. 
The host controller directs traffic flow to devices, so no USB device can transfer any data on 
the bus without an explicit request from the host controller. In USB 2.0, the host controller 
polls the bus for traffic, usually in a round-robin fashion. The throughput of each USB port is 
determined by the slower speed of either the USB port or the USB device connected to the 
port. 

http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Polling_%28computer_science%29
http://en.wikipedia.org/wiki/Round-robin_scheduling
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High-speed USB 2.0 hubs contain devices called transaction translators that convert between 
high-speed USB 2.0 buses and full and low speed buses. When a high-speed USB 2.0 hub is 
plugged into a high-speed USB host or hub, it will operate in high-speed mode. The USB hub 
will then either use one transaction translator per hub to create a full/low-speed bus that is 
routed to all full and low speed devices on the hub, or will use one transaction translator per 
port to create an isolated full/low-speed bus per port on the hub. 
Because there are two separate controllers in each USB 3.0 host, USB 3.0 devices will 
transmit and receive at USB 3.0 data rates regardless of USB 2.0 or earlier devices connected 
to that host. Operating data rates for them will be set in the legacy manner. 
 
 Q.6 a. Give the organization of a 2M X 32 memory module using 512K X 8 

memory chips.  Explain the organization. 
 

Answer: Refer Page No. 306 ad Fig 5.10 from Text Book 

 
    b.  Explain the following mapping procedure: 
   (i)     Direct mapping 
   (ii)    Associative mapping    (4+4) 
 

Answer: Refer page nos 317 & 318 from Text Book 

 
 Q.7 a.   Draw a flow chart to explain how addition and subtraction of two fixed 

point numbers can be done. Give an example to explain it.  
 

Answer:  
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  b.  Explain a method of translating virtual address of a program into physical 

address with the help of a diagram. 
 

Answer:  
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Virtual memory is easiest to comprehend if one thinks in terms of the VAS, and not the 
physical memory of the machine nor the size of its page file. Byte values in the VAS come 
only from byte values in a file. The OS manages the mapping between the VAS and the files 
that hold its values. 
Each time an application is run on an operating system (OS), the OS creates a new process 
and a new VAS for this process. 
Physical memory comes in various flavors: on-chip cache, off-chip cache, and system 
memory. As far as the process is concerned, system memory is just another level of cache 
used by the OS. System memory has a lot to do with performance, but nothing to do with the 
architecture of a process. The process architecture is based on the VAS. Physical memory is 
used by the OS to map values from file bytes to VAS addresses: process memory is VAS 
memory, not physical memory. 

Example 
In the following description, the terminology used will be particular to the Windows 
NT OS, but the concepts are applicable to other virtual memory operating systems. 

When you run a new application on a 32-bit OS, the process has a 4 GiB VAS: each one of 
the memory addresses (from 0 to 232−1) in that space can have a single byte as value. 
Initially, none of them have values ('-' represents no value). Using or setting values in such a 
VAS would cause a memory exception. 
           0                                            4GB 
VAS        |----------------------------------------------| 
Then the application's EXE file is mapped into the VAS. Addresses in the process VAS are 
mapped to bytes in the exe file. The OS manages the mapping: 
           0                                            4GB 

http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Physical_memory
http://en.wikipedia.org/wiki/Page_%28computer_science%29
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/CPU_cache
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/Gibibyte
http://en.wikipedia.org/wiki/Memory_address
http://en.wikipedia.org/wiki/Page_fault
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VAS        |---vvvvvvv------------------------------------| 
mapping        |-----| 
file bytes     app.exe 
The v's are values from bytes in the mapped file. Then, required DLL files are mapped (this 
includes custom libraries as well as system ones such as kernel32.dll and user32.dll): 
           0                                            4GB 
VAS        |---vvvvvvv----vvvvvv---vvvv-------------------| 
mapping        |||||||    ||||||   |||| 
file bytes     app.exe    kernel   user 
The process then starts executing bytes in the exe file. However, the only way the process can 
use or set '-' values in its VAS is to ask the OS to map them to bytes from a file. A common 
way to use VAS memory in this way is to map it to the page file. The page file is a single file, 
but multiple distinct sets of contiguous bytes can be mapped into a VAS: 
           0                                            4GB 
VAS        |---vvvvvvv----vvvvvv---vvvv----vv---v----vvv--| 
mapping        |||||||    ||||||   ||||    ||   |    ||| 
file bytes     app.exe    kernel   user   system_page_file 
And different parts of the page file can map into the VAS of different processes: 
           0                                            4GB 
VAS 1      |---vvvv-------vvvvvv---vvvv----vv---v----vvv--| 
mapping        ||||       ||||||   ||||    ||   |    ||| 
file bytes     app1 app2  kernel   user   system_page_file 
mapping             ||||  ||||||   ||||       ||   | 
VAS 2      |--------vvvv--vvvvvv---vvvv-------vv---v------| 
On a 32-bit Microsoft Windows installation, by default, only 2 GiB are made available to 
processes for their own use. The other 2GB are used by the operating system. On later 32-bit 
editions of Microsoft Windows it is possible to extend the user-mode virtual address space to 
3 GiB while only 1 GiB is left for kernel-mode virtual address space by marking the programs 
as IMAGE_FILE_LARGE_ADDRESS_AWARE and enabling the /3GB switch in the 
boot.ini file. 
On 64-bit Microsoft Windows, processes running 32-bit executables that were linked with the 
/LARGEADDRESSAWARE:YES option have access to 4 GiB of virtual address space; 
without that option they are limited to 2GB. By default, 64-bit processes have 8TB of user-
mode virtual address space; Linking with /LARGEADDRESSAWARE:NO artificially limits 
the user-mode virtual address space to 2 GB. 
Allocating memory via system calls such as C's malloc implicitly maps bytes of the page file 
into the VAS. However, a process can also explicitly map file bytes. 
 
 Q.8 a. Perform signed multiplication of -3 and 7 using booth multiplication 

algorithm. Represent the numbers in 5 bits including sign bit. Give booth 
multiplier recording table that is used in the multiplication.     

 

Answer:  

http://en.wikipedia.org/wiki/Memory-mapped_file
http://en.wikipedia.org/wiki/Dynamic-Link_Library
http://en.wikipedia.org/wiki/Page_file
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Malloc
http://en.wikipedia.org/wiki/Memory-mapped_file
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  b.  Explain restoring division algorithm with a diagram. 
 

Answer:  
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 Q.9 a.  Hard-wired control unit is faster than micro programmed control unit. 

Justify this statement. 
 

Answer:  Hardwired vs. Micro-programmed Computers  

It should be mentioned that most computers today are micro-programmed. The reason is 
basically one of flexibility. Once the control unit of a hard-wired computer is designed and 
built, it is virtually impossible to alter its architecture and instruction set. In the case of a 
micro-programmed computer, however, we can change the computer's instruction set simply 
by altering the microprogram stored in its control memory. In fact, taking our basic computer 
as an example, we notice that its four-bit op-code permits up to 16 instructions. Therefore, we 
could add seven more instructions to the instruction set by simply expanding its 
microprogram. To do this with the hard-wired version of our computer would require a 
complete redesign of the controller circuit hardware. 
Another advantage to using micro-programmed control is the fact that the task of designing 
the computer in the first place is simplified. The process of specifying the architecture and 
instruction set is now one of software (micro-programming) as opposed to hardware design. 
Nevertheless, for certain applications hard-wired computers are still used. If speed is a 
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consideration, hard-wiring may be required since it is faster to have the hardware issue the 
required control signals than to have a "program" do it. 
 

  b. Explain the variety of techniques available for sequencing of 
microinstructions based on the format of the address information in the 
microinstruction. 

 

Answer:  

The two main variations of microprogramming are the horizontal and vertical methods. In the 
previous section, we already saw some distinction between horizontal and vertical next-state 
organizations. In horizontal microprogramming, there is one ROM output for each control 
point in the data-path. Vertical microprogramming is based on the observation that only a 
subset of these signals is ever asserted in a given state. Thus, the control outputs can be stored 
in the ROM in an encoded form, effectively reducing the width of the ROM word at the 
expense of some external decoding logic.  
 
Encoding the control signals may limit the data-path operations that can take place in parallel. 
If this is the case, we may need multiple ROM words to encode the same data-path operations 
that could be performed in a single horizontal ROM word.  
 
For example, consider a microprogrammed control for a machine with four general-purpose 
accumulators. Most computer instruction formats limit the destination of an operation to a 
single register. Realizing this, you may choose to encode the destination of a register transfer 
operation in 2 bits rather than 4. The destination register select line is driven by logic that 
decodes these 2 bits from the control. Thus, at any given time, only one of the registers is 
selected as a destination. 
 
The art of engineering a microprogrammed control unit is to strike the correct balance 
between the parallelism of the horizontal approach and the ROM economy of a vertical 
encoding. For example, the encoded register enable lines eliminate the possibility of any state 
loading two registers at the same time, even if this was supported by the processor data-path. 
If a machine instruction must load two registers, it will require multiple control states (and 
ROM words) to implement its execution.  
 
We begin our study with the horizontal approach to microprogramming. We will see that the 
instruction set and the data-path typically do not support the full parallelism implied by 
horizontal control, so we will examine methods of encoding the ROM word to reduce its size. 

Horizontal Microprogramming 
The horizontal next-state organization of Figure 12.22 offers the core of a horizontal 
microprogrammed controller. An extremely horizontal control word format would have 1 bit 
for each microoperation in the data-path. Let's develop such a format for the simple CPU's 
control. 
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Our sample processor supports 14 register transfer operations. We further decompose these 
into 22 discrete microoperations (ordered by destination):  
PC --> ABUS  
IR --> ABUS  
MBR --> ABUS  
RBUS --> AC  
AC --> ALU A  
MBUS --> ALU B  
ALU ADD  
ALU PASS B  
MAR --> Address Bus  
MBR --> Data Bus  
ABUS --> IR  
ABUS --> MAR  
Data Bus --> MBR  
RBUS --> MBR  
MBR --> MBUS  
0 --> PC  
PC + 1 --> PC  
ABUS --> PC  
Read/   
Request  
AC --> RBUS  
ALU Result --> RBUS 
A very long ROM word for a four-way branch sequencer would have a and b multiplexer bits, 
four 4-bit next states, and 22 microoperation bits. This yields a total ROM word length of 40 
bits, as shown in Figure 12.23.  
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Figure 12.24 gives the ROM contents for the Moore controller of Figure 12.1 (the branch 
sequencer of Figure 12.22 implements a Moore machine). The a multiplexer inputs are Sel0 = 
Wait, Sel1 = IR<15> and the b inputs are Sel0 = AC<15>, Sel1 = IR<14>. We assume the 
next-state register is reset directly.  
 
The multiplexers on the next state work just as in Figure 12.22. For example, consider state 
IF1. We stay in this state if Wait is unasserted. If Wait is asserted, we advance to state IF2. 
The a and b mux controls are set to examine Wait and AC<15>, respectively. Thus, the 0X 
next-state bits (A0, A1) are set to the encoding for IF1, 0010. Similarly, the 1X next states 
(A2, A3) are set to the encoding for IF2, 0011. 
 
Reducing ROM Word Width Through Encoding The horizontal approach offers the most 
flexibility by providing access to all of the data-path control points at the same time. The 
disadvantage is the width of the ROM word, which can exceed a few hundred bits in complex 
controllers.  
 
A good way to reduce the ROM size is by encoding its output. This need not lead to an 
inherent loss of parallelism. After all, certain control combinations may not make sense 
logically (for example, 0 --> PC and PC + 1 --> PC are logically exclusive) or might be ruled 
out by the data-path busing strategy (for example, PC --> ABUS and IR --> ABUS cannot 
take place simultaneously).  
 
Furthermore, the ROM contents of Figure 12.24 are very sparse. In any given state, very few 
of the control signals are ever asserted. This means we can group the control signals into 
mutually exclusive sets to encode them. We decode them outside the ROM with additional 
hardware.  
 
For example, the three PC microoperations, 0 --> PC, PC + 1 --> PC, and ABUS --> PC, are 
never asserted in the same state. For the cost of an external 2-to-4 decoder, a ROM bit can be 
saved by encoding the signals as follows:  
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00 No PC control 

01 0 --> PC 

10 PC + 1 --> PC 

11 ABUS --> PC  

There are many other plausible encoding strategies for this controller. MAR --> Address Bus 
and Request are always asserted together, as are RBUS --> AC, MBUS --> ALU B, MBR --> 
MBUS, and ALU --> RBUS. If we have designed the ALU to pass its A input selectively, we 
can combine AC --> ALU A in state LD2 with this list of signals. As another example, we can 
combine MBR --> ABUS and ABUS --> IR. Taken together, these encodings save six ROM 
bits.  
 
We can save additional ROM bits by finding unrelated signals that are never asserted at the 
same time. These are good candidates for encoding. For example, we can combine PC --> 
ABUS, IR --> ABUS, and Data Bus --> MBR, encoding them into 2 bits. Applying all of 
these encodings at the same time yields the encoded control unit in Figure 12.25. The direct 
ROM outputs have been reduced from 22 to 15.  

 
As more control signals are placed in the ROM in an encoded form, we move from a very 
horizontal format to one that is ever more vertical. We present a systematic approach to 
vertical microprogramming next.  

Vertical Microprogramming 
Vertical microprogramming makes more use of ROM encoding to reduce the length of the 
control word. To achieve this goal, we commonly use multiple microword formats. For 
example, many states require no conditional next-state branch; they simply advance to the 
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next state in sequence. Rather than having every microword contain a next state and a list of 
microoperations, we can shorten the ROM word by separating these two functions into 
individual microword formats: one for conditional "branch jumps" and another for register 
transfer operations/microoperations. 
 
Shortening the ROM word does not come free. We may need several ROM words in a 
sequence to perform the same operations as a single horizontal microword. The combination 
of extra levels of decoding, multiple ROM accesses to execute a sequence of control 
operations, and sacrifice of the potential parallelism of the vertical approach leads to slower 
implementations. The basic machine cycle time increases, and the number of machine cycles 
to execute an instruction also increases.  
 
Despite this inefficiency, designers prefer vertical microcode because it is much like coding 
in assembly language. So the trade-off between vertical and horizontal microcode is really a 
matter of ease of implementation versus performance. 
 
Vertical Microcode Format for the Simple CPU Let's develop a simple vertical microcode 
format for our simple processor. We will introduce just two formats: a branch jump format 
and a register transfer/operation -format.  
 
In a branch jump microword, we include a field to select a signal to be tested (Wait, 
AC<15>, IR<15>, IR<14>) and the value it should be tested against (0 or 1). If the signal 
matches the specified value, the rest of the microword contains the address of the next ROM 
word to be fetched. The condition selection field can be 2 bits in length; the condition 
comparison field can be 1 bit wide. 
 
The register transfer/operation microword contains three fields: a register source, a register 
destination, and an operation field for instructing functional units like the ALU what to do. To 
start, let's arrange the microoperations according to these categories: 
 
Sources:  
PC --> ABUS  
IR --> ABUS  
MBR --> MBUS  
AC --> ALU A  
MAR --> Mem Address Bus  
MBR --> Mem Data Bus  
MBR --> MBUS  
AC --> RBUS  
ALU Result --> RBUS 
Destinations:  
RBUS --> AC  
MBUS --> ALU B 
MBUS --> IR 
ABUS --> MAR 
Mem Data Bus --> MBR 
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RBUS --> MBR 
ABUS --> PC 
Operations:  
ALU ADD 
ALU PASS B 
0 --> PC 
PC + 1 --> PC 
Read (Read, Request) 
Write ( , Request) 
We can encode the nine sources in a 4-bit field, the seven destinations in 3, and the six 
operations also in 3 (we have combined Read/  and Request in the operation format). 
 
It would certainly be convenient to encode all the fields in the same number of bits. At the 
moment, we have several more sources than destinations. A close examination of the data-
path of Figure 11.26 indicates that we can do better at encoding the destinations. We can 
assume that the AC is hardwired to the ALU A input, just as the MBUS is wired to the ALU B 
input. Also, the MBR is the only source on the MBUS, so we can eliminate the 
microoperation MBR --> MBUS. This gives us seven sources and six destinations, easily 
encoded in 3 bits each. 
 
There is still one hitch. On writes to memory, such as during a store, the MAR must drive the 
memory address lines and the MBR must drive the data lines. But as listed above, these two 
microoperations are now mutually exclusive.  
Fortunately, there is a reasonable solution. We can move the operation MBR --> Mem Data 
Bus from the sources to the destinations, simply by thinking of the memory as a destination 
rather than the MBR as a source. The encoding of the two formats can fit in a very compact 
10 bits, as shown in Figure 12.26.  

 
 
 
  c. Explain time-shared common bus organization. 
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Answer:  
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