Q. 2 a. If $\mathrm{y}=\mathrm{X}^{\mathrm{X}} \mathrm{X} \ldots \cdots \cdots \cdots \cdots, \ldots,{ }^{\infty}$, then prove that $\mathrm{X} \frac{\mathrm{dy}}{\mathrm{dX}}=\frac{\mathrm{y}^{2}}{\left(1-\mathrm{y} \log _{\mathrm{e}} \mathrm{X}\right)}$

Ans. we have $\mathrm{y}=\mathrm{X}^{\mathrm{X}} \mathrm{X} \cdots \cdots \cdots \cdots \cdots{ }^{\mathrm{X}}=\mathrm{X}^{\mathrm{y}}\left[\because \mathrm{X}^{\mathrm{X}^{\mathrm{X}} \ldots \ldots \ldots}=\mathrm{m}\right]$
by taking $\ell \log$ of both sides, we get
$\ell \log y=y \quad \log x$
differentiating w.r.t. x
$\frac{1}{y} \frac{d y}{d x}=\frac{y}{x}+(\log x) \frac{d y}{d x}$
$\frac{d y}{d x}\left(\frac{1}{y}-\log x\right)=\frac{y}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{y^{2}}{1-y \log x}$
Hence Proved
b. Find the equation of the tangent to the curve $x^{2}+2 y=8$ which is perpendicular to the line $x-2 y+1=0$.

Ans. The given curve is $x^{2}+2 y=8$ \qquad
Differentiating w.r.t. ' x ' we get
$2 x+2 \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-x$
and the given line is $x-2 y+1=0$
Differentiating w.r.t. ' x ' we get

$$
1-2 \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{1}{2}
$$

Since the tangent is perpendicular to the line therefore, (slope of tangent) $($ slope of line) $=-1$

$$
\Rightarrow(-\mathrm{x})\left(\frac{1}{2}\right)=-1 \Rightarrow \mathrm{x}=2
$$

Now, we have to find y co-ordinate when $x=2$ on putting $x=2$ in (i), we get
$(2)^{2}+2 \mathrm{y}=8 \Rightarrow 2 \mathrm{y}=8-4=4 \Rightarrow \mathrm{y}=2$
\therefore Equation of tangent to (i) at the point $(2,2)$ is,
$y-2=-2(x-2)$
$\Rightarrow y-2=-2 x+4$
$\Rightarrow 2 x+y=6$
Q. 3 a. Evaluate $\int e^{-x} \cdot \cos x d x$

Ans. Let $\mathrm{I}=\int \mathrm{e}_{\mathrm{I}}^{-\mathrm{x}} \cdot \cos \mathrm{xdx}$, then

$$
=\mathrm{e}^{-\mathrm{x}} \sin \mathrm{x}-\int-\mathrm{e}^{-\mathrm{x}} \cdot \sin \mathrm{xdx}
$$

$$
=\mathrm{e}^{-\mathrm{x}} \sin \mathrm{x}+\int \mathrm{e}^{-\mathrm{x}} \cdot \sin \mathrm{xdx}
$$

I II
$=e^{-x} \sin x+e^{-x}(-\cos x)-\int\left(-e^{-x}\right)(-\cos x) d x$
$=e^{-x} \sin x-e^{-x} \cos x-\int e^{-x} \cos x d x$
or $\quad \mathrm{I}=\mathrm{e}^{-\mathrm{x}} \sin \mathrm{x}-\mathrm{e}^{-\mathrm{x}} \cos \mathrm{x}-\mathrm{I}$
or $\quad 2 I=e^{-x}(\sin x-\cos x)$
or $\quad I=\frac{e^{-x}}{2}(\sin x-\cos x)$
b. Evaluate $\int_{1}^{2} \frac{1}{\mathrm{x}\left(1+\mathrm{x}^{2}\right)} \mathrm{dx}$

Ans. Let $\frac{1}{x\left(1+x^{2}\right)}=\frac{A}{x}+\frac{B x+C}{1+x^{2}}$, then
$1=\mathrm{A}\left(1+\mathrm{x}^{2}\right)+(\mathrm{B} x+\mathrm{C}) \mathrm{x}$
Putting $x=0$ is (i), we get $A=1$. Comparing the coefficients of x^{2} and x, we get,
$\mathrm{A}+\mathrm{B}=0$ and $\mathrm{C}=0 \Rightarrow \mathrm{~B}=-1$ and $\mathrm{C}=0[\because \mathrm{~A}=1]$
$\therefore \frac{1}{\mathrm{x}\left(1+\mathrm{x}^{2}\right)}=\frac{1}{\mathrm{x}}-\frac{\mathrm{x}}{1+\mathrm{x}^{2}}$
So, $\quad \int_{1}^{2} \frac{1}{x\left(1+x^{2}\right)} d x=\int_{1}^{2} \frac{1}{x} d x-\frac{1}{2} \int_{1}^{2} \frac{2 x}{1+x^{2}} d x$
$=[\log x]_{1}^{2}-\frac{1}{2}\left[\log \left(1+x^{2}\right)\right]_{1}^{2}$
$=(\ell \operatorname{og} 2-\ell \operatorname{og} 1)-\frac{1}{2}[\log 5-\log 2]$
$=\ell \operatorname{og} 2-\frac{1}{2} \ell \log 5+\frac{1}{2} \ell \log 2$
$=\frac{3}{2} \ell \log 2-\frac{1}{2} \ell \log 5$

Q. 4 a. Find the matrix A satisfying the equation $\left[\begin{array}{ll}2 & 1 \\ 3 & 3\end{array}\right] A\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Ans. \quad Let $|B|=\left|\begin{array}{ll}2 & 1 \\ 3 & 3\end{array}\right|$ and $|C|=\left|\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right|$, then
$|B|=\left|\begin{array}{ll}2 & 1 \\ 3 & 3\end{array}\right|=6-3=3 \neq 0$ and
$|C|=\left|\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right|=10-9=1 \neq 0$
So, B and C are invertible matrices. The given matrix equation is $B A C=I$
on pre- multiplying by B^{-1} and post multiplying by C^{-1}, we get,
$\Rightarrow \mathrm{B}^{-1}(\mathrm{BAC}) \mathrm{C}^{-1}=\mathrm{B}^{-1} \mathrm{IC}^{-1}$
$\Rightarrow\left(\mathrm{B}^{-1} \mathrm{~B}\right) \mathrm{A}\left(\mathrm{C} \mathrm{C}^{-1}\right)=\mathrm{B}^{-1} \cdot \mathrm{C}^{-1}$
$\Rightarrow \mathrm{IA} \mathrm{I}=\mathrm{B}^{-1} . \mathrm{C}^{-1}$
$\Rightarrow \mathrm{A}=\mathrm{B}^{-1} \cdot \mathrm{C}^{-1}$
Matrix of co- factors of $B=\left[\begin{array}{cc}3 & -3 \\ -1 & 2\end{array}\right]$
Adjoint $B=\left[\begin{array}{cc}3 & -1 \\ -3 & 2\end{array}\right]$
$\mathrm{B}^{-1}=\frac{1}{|\mathrm{~B}|} \quad$ Adj $\mathrm{B}=\frac{1}{3}\left[\begin{array}{cc}3 & -1 \\ -3 & 2\end{array}\right]$
Matrix of co-factors of $\mathrm{C}=\left[\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right]$
Adjoint $\mathrm{C}=\left[\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right]$
$\mathrm{C}^{-1}=\frac{1}{|\mathrm{C}|} \quad \operatorname{Adj} \mathrm{C}=\left[\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right]$
on putting the value of B^{-1} from (ii) and C^{-1} from (iii) in (i), we get

$$
\begin{aligned}
\therefore \quad \mathrm{A}=\mathrm{B}^{-1} \cdot \mathrm{C}^{-1} & =\frac{1}{3}\left[\begin{array}{cc}
3 & -1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
6+3 & -9+5 \\
-6-6 & 9+10
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
9 & -14 \\
-12 & 19
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -14 / 3 \\
-4 & 19 / 3
\end{array}\right]
\end{aligned}
$$

b. Solve the following set of equations by using Cramer's rule

$$
2 x-y+3 z=9, x+y+z=6, x-y+z=2
$$

Ans. Let $\Delta=\left|\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right|=-2$

$$
\Delta x=\left|\begin{array}{ccc}
9 & -1 & 3 \\
6 & 1 & 1 \\
2 & -1 & 1
\end{array}\right|=-2
$$

$$
\Delta y=\left|\begin{array}{lll}
2 & 9 & 3 \\
1 & 6 & 1 \\
1 & 2 & 1
\end{array}\right|=-4
$$

$$
\Delta \mathrm{z}=\left|\begin{array}{ccc}
2 & -1 & 9 \\
1 & 1 & 6 \\
1 & -1 & 2
\end{array}\right|=-6
$$

Now, $\mathrm{x}=\frac{\Delta \mathrm{x}}{\Delta}=\frac{-2}{-2}=1$

$$
y=\frac{\Delta y}{\Delta}=\frac{-4}{-2}=2
$$

$$
\mathrm{z}=\frac{-6}{-2}=3
$$

$\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$
Q. 5 a. Solve $x^{2} d y+y(x+y) d x=0$

Ans. The given equation is $\frac{d y}{d x}+\frac{y(x+y)}{x^{2}}=0$ \qquad
which is a homogeneous differential equation of first order, putting $\mathrm{y}=\mathrm{vx}$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, equation (i) yields
$v+x \frac{d v}{d x}+\frac{v x(x+v x)}{x^{2}}=0$
or $\quad x \frac{d v}{d x}+v^{2}+2 v=0$

$$
\text { or } \frac{d v}{v^{2}+2 v}+\frac{d x}{x}=0
$$

$\frac{1}{2}\left(\frac{1}{v}+\frac{1}{v+2}\right) d v+\frac{d x}{x}=0$
on integrating the required solution is

$$
\frac{1}{2}[\log v-\ell \log (v+2)]+\ell \log x=\ell \operatorname{ogc}
$$

$$
\ell \log \left(x \sqrt{\frac{v}{v+2}}\right)=\ell \text { ogc }
$$

$$
\text { or } x \sqrt{\frac{y / x}{y / x+2}}=c \text {, as } v=\frac{y}{x}
$$

$$
\text { or } x \sqrt{\frac{y}{y+2 x}}=c
$$

$$
x^{2} y=a(y+2 x) \text { where } c^{2}=a
$$

b. Solve $\left(1+y^{2}\right) d x+x d y=\tan ^{-1} y d y$

Ans. $\quad\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$

$$
\begin{gathered}
\Rightarrow \quad\left(1+y^{2}\right) \frac{d x}{d y}=\tan ^{-1} y-x \\
\Rightarrow \quad \frac{d x}{d y}=\frac{\tan ^{-1} y}{1+y^{2}}-\frac{x}{1+y^{2}} \\
\Rightarrow \frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}} \\
\Rightarrow \quad \text { I. F. }=e^{\int \frac{1 d x}{1+y^{2}}} \\
\quad=e^{\tan ^{-1} y}
\end{gathered}
$$

So solution of the given differential equation is,

$$
\begin{aligned}
& =x e^{\tan ^{-1} y}=\int \frac{\tan ^{-1} y}{1+y^{2}} \cdot e^{\tan ^{-1} y} \cdot d y+c \\
& \Rightarrow x e^{\tan ^{-1} y}=\int \frac{\tan ^{-1} y \cdot e^{\tan ^{-1} y} \cdot d y}{1+y^{2}}+c
\end{aligned}
$$

Put $\tan ^{-1} \mathrm{y}=\mathrm{t}$
$\Rightarrow \frac{1}{1+y^{2}} \mathrm{dy}=\mathrm{dt}$
$\Rightarrow \mathrm{x} \mathrm{e}^{\tan ^{-1} \mathrm{y}}=\int \mathrm{te}^{\mathrm{t}} \mathrm{dt}+\mathrm{c}$
$\Rightarrow x e^{\tan ^{-1} y}=t e^{t}-\int e^{t} d t+c$
$\Rightarrow x e^{\tan ^{-1} y}=t e^{t}-e^{t}+c$
$\Rightarrow x e^{\tan ^{-1} y}=e^{t}(t-1)+c$
$\Rightarrow x e^{\tan ^{-1} y}=e^{\tan ^{-1} y}\left(\tan ^{-1} y+1\right)+c$
$\Rightarrow\left(\tan ^{-1} y-1\right)+c e^{\tan ^{-1} y}=x$
Q. 6 a. Prove that the coefficient of x^{r} in the expansion of $(1-4 x)^{-1 / 2}$ is $\frac{(2 r)!}{(r!)^{2}}$

Ans. We know that the general term of the expansion
$(1+x)^{n}$ is $T_{r+1}=\frac{n(n-1)(n-2) \ldots \ldots \ldots \ldots \ldots . .(n+1-r) \cdot x^{r}}{r!}$
Putting $\mathrm{n}=-\frac{1}{2}$ and -4 x for x , we get
$\mathrm{T}_{\mathrm{r}+1}=\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \ldots \ldots \cdot\left[-\left(\frac{2 \mathrm{r}-1}{2}\right)\right]}{\mathrm{r}!}(-1)^{\mathrm{r}} \cdot\left(2^{2}\right)^{\mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}$
$=(-1)^{\mathrm{r}}(-1)^{\mathrm{r}} \frac{1 \cdot 3 \cdot 5 \cdot 7 \ldots \ldots .(2 \mathrm{r}-1)}{2^{\mathrm{r}} \times \mathrm{r}!} \cdot 2^{2 \mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}$
$=\frac{1 \cdot 3 \cdot 5 \cdot 7 \ldots \ldots .(2 \mathrm{r}-1)}{\mathrm{r}!} 2^{\mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}$

Multiplying and dividing by 2.4.6...2r, we have
$=\frac{1 \cdot 2 \cdot 3 \cdot 4 \ldots \ldots .(2 \mathrm{r}-1)^{2 \mathrm{r}}}{[2 \cdot 4 \cdot 6 \cdot 8 \ldots 2 \mathrm{r}] \mathrm{r}!} 2^{\mathrm{r}} \cdot \mathrm{X}^{\mathrm{r}}=\frac{2 \mathrm{r}!}{2^{\mathrm{r}}(1.2 .3 . \mathrm{r}) \mathrm{r}!} 2^{\mathrm{r}} \cdot \mathrm{X}^{\mathrm{r}}$
$=\frac{2 \mathrm{r}!}{\mathrm{r}!\mathrm{r}!} \mathrm{x}^{\mathrm{r}}=\frac{2 \mathrm{r}!}{(\mathrm{r}!)^{2}} \mathrm{x}^{\mathrm{r}}$
Hence, the coefficient of x^{r} is $\frac{2 r!}{(r!)^{2}} \underline{\text { Proved }}$
b. Find three number in A.P. whose sum is 21 and their product is 315.

Ans. Let three numbers is A.P. be,
$a-d, a, a+d$ \qquad (i)

Their sum $a-d+a+a+d=21$
$\therefore 3 \mathrm{a}=21 \Rightarrow \mathrm{a}=7$
Now product of 3 numbers $=(a-d) a(a+d)$
$\therefore(a-d) . a(a+d)=315$
Putting the value of a, we get
$(7-d) 7(7+d)=315$
$\Rightarrow\left(49-\mathrm{d}^{2}\right)=\frac{315}{7}=45$
$\Rightarrow d^{2}=49-45=4$
$\Rightarrow \mathrm{d}= \pm 2$
Case I- When $\mathrm{a}=7, \mathrm{~d}=2$ putting in (i)
\therefore Numbers are $7-2,7,7+2$ i.e. $5,7,9$
Case II When $\mathrm{a}=7, \mathrm{~d}=-2$ putting in (i)
\therefore Numbers $7+2,7,7-2$ is $9,7,5$
\therefore Required three numbers are $5,7,9$, or $9,7,5$
Q. 7 a. If A, B, C are the angles of a triangle, then prove that, $\tan 2 A+\tan$ $2 B+\boldsymbol{\operatorname { t a n }} 2 \mathrm{C}=\boldsymbol{\operatorname { t a n }} 2 \mathrm{~A} \cdot \boldsymbol{\operatorname { t a n }} 2 B \cdot \tan 2 \mathrm{C}$

Given that $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi=180^{\circ}$
then $2 \mathrm{~A}+2 \mathrm{~B}+2 \mathrm{C}=360^{\circ}$
or $2 \mathrm{~A}+2 \mathrm{~B}=360^{\circ}-2 \mathrm{C}$
Taking tangent of both sides
$\tan (2 \mathrm{~A}+2 \mathrm{~B})=\tan \left(360^{\circ}-2 \mathrm{C}\right)$
$\frac{\tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}}{1-\tan 2 \mathrm{~A} \cdot \tan 2 \mathrm{~B}}=-\tan 2 \mathrm{C}$
Cross-multiplying
$\therefore \tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}=-\tan 2 \mathrm{C}+\tan 2 \mathrm{~A} \cdot \tan 2 \mathrm{~B} \cdot \tan 2 \mathrm{C}$
Transpasing,
$\tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}+\tan 2 \mathrm{C}=\tan 2 \mathrm{~A} \cdot \tan 2 \mathrm{~B} \cdot \tan 2 \mathrm{C}$
Hence Proved.
b. Prove that, $\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 60^{\circ} \cdot \sin 70^{\circ}=\frac{\sqrt{3}}{16}$

Ans. We have,

$$
\begin{aligned}
& \text { LHS }=\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sqrt{3} / 2 \cdot \sin 70^{\circ} \\
& =\frac{\sqrt{3}}{2} \cdot \frac{1}{2}\left[2 \sin 50^{\circ} \cdot \sin 10^{\circ}\right] \sin 70^{\circ} \\
& =\frac{\sqrt{3}}{4}\left[\cos \left(50^{\circ}-10^{\circ}\right)-\cos \left(50^{\circ}+10^{\circ}\right)\right] \sin 70^{\circ} \\
& =\frac{\sqrt{3}}{4} \frac{1}{2}\left[2 \sin 70^{\circ} \cdot \cos 40^{\circ}-2 \sin 70^{\circ} \cos 60^{\circ}\right] \\
& =\frac{\sqrt{3}}{8}\left[\sin \left(70^{\circ}+40^{\circ}\right)+\sin \left(70^{\circ}-40^{\circ}\right)-2 \sin 70^{\circ} \frac{1}{2}\right] \\
& =\frac{\sqrt{3}}{8}\left[\sin 110^{\circ}+\sin 30^{\circ}-\sin 70^{\circ}\right] \\
& =\frac{\sqrt{3}}{8}\left[\sin \left(180^{\circ}-70^{\circ}\right)+\frac{1}{2}-\sin 70^{\circ}\right] \\
& =\frac{\sqrt{3}}{8}\left[\sin 70^{\circ}+\frac{1}{2}-\sin 70^{\circ}\right] \\
& =\frac{\sqrt{3}}{8} \times \frac{1}{2}=\sqrt{\frac{3}{16}}=\text { RHS }
\end{aligned}
$$

Hence Proved
Q. 8 a. Find the equation of the straight lines through the point (2,-1) and making an angle of 45° with the line $6 x+5 y-1=0$.

Ans. Equation of the straight line through $(2,-1)$ and having slope m is $y+1=m(x+2)$ \qquad (i)
(i) Makes an angle 45° with the line $6 \mathrm{x}+5 \mathrm{y}-1=0$ \qquad
Slope of (ii) in - $\frac{6}{5}$
$\tan 45^{\circ}= \pm \frac{m+\frac{6}{5}}{1-\frac{6 m}{5}} \quad$ or $\quad 1= \pm \frac{5 m+6}{5-6 m}$
taking + ve sign,
$5-6 \mathrm{~m}=+(5 \mathrm{~m}+6) \Rightarrow \mathrm{m}=-\frac{1}{11}$
Taking -ve sign,
$5-6 \mathrm{~m}=-(5 \mathrm{~m}+6) \Rightarrow \mathrm{m}=11$
Putting the values of m in (i) we get $y+1=-\frac{1}{11}(x-2)$ and
$\mathrm{y}+1=11(\mathrm{x}-2)$
or $x+11 y+9=0$ and $11 x-y-23=0$ are the required eqn. of the $\&$ line.
Ans. $x+11 y+9 \& 11 x-y-23=0$
b. Find the equation of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.

Ans. \quad Equation of any line parallel to $3 x-4 y-5=0$ is $3 x-4 y+k=0$
Put $x=0$ in $3 x-4 y-5=0$, we get $y=\frac{-5}{4}$

Therefore, $\left(0, \frac{-5}{4}\right)$ is a point on the line $3 x-4 y-5=0$ since the distance between the two lines is one unit therefore, the length of the perpendicular from $\left(0, \frac{-5}{4}\right)$ to $3 \mathrm{x}-4 \mathrm{y}+\mathrm{k}=0$ is 1 .
Hence $\frac{3 \times 0-4 \times \frac{-5}{4}+\mathrm{k}}{\sqrt{3^{2}+(-4)^{2}}}= \pm 1$

$$
\begin{aligned}
& \frac{5+k}{5}= \pm 1 \Rightarrow 5+k=5 \text { and } 5+k=-5 \\
& \Rightarrow k=0 \text { and } k=-10
\end{aligned}
$$

Putting the value of $\mathrm{k}=0$ and $\mathrm{k}=-10$ in (i)
$3 x-4 y=0$ and $3 x-4 y-10=0$ are the required equation of the straight lines.
Ans $\left\{\begin{array}{l}3 x-4 y=0 \\ 3 x-4 y-10=0\end{array}\right.$
Q. 9 a. Find the equation of the circle which passes through the points $(3,-2),(-2,0)$ and having its centre on the line $2 x-y-3=0$

Ans. Let the equation of the circle be
$x^{2}+y^{2}+2 g x+2 f y+c=0$ \qquad
as (i) passes through (3, -2)
$\therefore 9+4+6 \mathrm{~g}-4 \mathrm{f}+\mathrm{c}=0$
or $13+6 \mathrm{~g}-4 \mathrm{f}+\mathrm{c}=0$
or $6 \mathrm{~g}-4 \mathrm{f}+\mathrm{c}=-13$ \qquad
also (i) passes through ($-2,0$)
$\therefore 4+0-4 \mathrm{~g}-0+\mathrm{c}=0$
or $4 \mathrm{~g}-\mathrm{c}=4$
the centre ($-\mathrm{g},-\mathrm{f}$) of (i) lies on $2 \mathrm{x}-\mathrm{y}=3$
$-2 \mathrm{~g}+\mathrm{f}=3$ \qquad (iv)
adding (ii) and (iii), we get
$10 g-4 f=-9$ \qquad (v)

Solving (iv) and (v), we get,
$\mathrm{g}=\frac{3}{2}, \mathrm{f}=6$
Putting g in (iii), we get, $\mathrm{C}=2$
Substituting these values of g, f and c in (i) we get,
$x^{2}+y^{2}+3 x+12 y+2=0$
which is the required equation of circle.
$x^{2}+y^{2}+3 x+12 y+2=0$
b. Find the vertex, focus directrix, latus-rectum and axis of parabola $3 x^{2}+12 x-8 y=0$

Ans. The given equation is $3 x^{2}+12 x-8 y=0$

$$
3\left(x^{2}+4 x-\frac{8}{3} y\right)=0
$$

or $x^{2}+4 x+4-4-\frac{8}{3} y=0$
or $(x+2)^{2}=\frac{8}{3} y+4$
or $(x+2)^{2}=\frac{8}{3}\left(y+\frac{3}{2}\right)$ \qquad

Put $x+2=X$ and $y+\frac{3}{2}=Y$ (shifting the on origin)
\therefore (i) reduces to $\mathrm{X}^{2}=\frac{8}{3} \mathrm{Y}$ or $\mathrm{X}^{2}=4\left(\frac{2}{3}\right) \mathrm{Y}$

Comparing with standard equation we get the following table:

Equation	$X^{2}=\frac{8}{3} Y=4\left(\frac{2}{3} Y\right)$	$(x+2)^{2}=\frac{8}{3}\left(y+\frac{3}{2}\right)$
Vertex	$(0,0) \Rightarrow \mathrm{X}=0, \mathrm{Y}=0$	$\begin{array}{r} \left(-2, \frac{3}{2}\right)[\text { As X }=x+2 \Rightarrow x=-2 \\ \left.Y=y+\frac{3}{2} \Rightarrow y=-\frac{3}{2}\right] \end{array}$
Focus	$\left(0, \frac{2}{3}\right) \Rightarrow X=0, Y=\frac{2}{3}$	$\begin{array}{r} \left(-2, \frac{-5}{6}\right)[\text { As } X=x+2 \Rightarrow x=-2 \\ \left.Y=y+\frac{3}{2}=\frac{2}{3} \Rightarrow y=-\frac{5}{6}\right] \end{array}$
Directrix	$\mathrm{Y}+\frac{2}{3}=0$	$\begin{gathered} Y+\frac{13}{6}=0\left[\text { As } y+\frac{3}{2}+\frac{2}{3}=0\right. \\ \Rightarrow y+\frac{13}{6}=0 \end{gathered}$
L.R.	$\frac{8}{3}$	$\frac{8}{3}$
Axis	$\mathrm{X}=0$	$x+2=0$

TEXTBOOKS

1. Applied Mathematics for Polytechnics, H. K. Dass, 8th Edition, CBS Publishers \& Distributors.
2. A Text book of Comprehensive Mathematics Class XI, Parmanand Gupta, Laxmi Publications (P) Ltd, New Delhi.
3. Engineering Mathematics, H. K. Dass, S, Chand and Company Ltd, 13th Edition, New Delhi.
