Q2 (a).	Determine power and energy of the following signals
	(i) $x(t) = e^{j\omega_0 t} -\infty < t < \infty$
	(ii) $\mathbf{x}(\mathbf{t}) = \mathbf{A} \cos(\omega t)$
	(iii) $x(n)=u(n)$
	Solution:
	(i) $x(t) = e^{jw_0 t} - \infty < t < \infty$
	$I = \int_{-T}^{T} \left x(t) \right ^2 dt$
	$\left x(t)\right = \left e^{jw_0t}\right = 1$
	$= \int_{-T}^{T} x(t) ^2 dt = \int_{-T}^{T} 1 dt = 2T$
	$E = \lim_{T \to \infty} [I] = \infty$
	$P = \lim_{T \to \infty} \left[\frac{I}{2T} \right] = 1$
	Power is finite, it is a power signal
	(ii) $x(t) = A \cos(wt)$
	$I = \int_{T} \left x(t) \right ^2 dt$
	$=\int_{T}^{T}\cos^2 wt dt$
	$= \int_{T} \frac{(1+\cos 2wt)}{2} dt = \int_{T} \frac{1}{2} dt + \frac{1}{2} \int_{T} \cos 2wt dt$
	$E = lt [I] = \infty$
	$P = \lim_{T \to \infty} \left[\frac{I}{T} \right] = \frac{1}{2}$
	Power is finite, it is a power signal

	(iii) $x(n) = u(n)$
	$I = \sum_{n=1}^{N} x(n) ^2$
	$I = \sum_{n=-N} x(n) $
	$I = \sum_{n=1}^{N} 1 ^2 = [2N+1]$
	n=-N
	$E = \lim_{N \to \infty} [I] = \infty$
	$P = \lim_{N \to \infty} \frac{[I]}{2N+1} = 1$
	Power is finite, it is a power signal
Q2 (b)	Given x(t) as shown in Fig.3
	(i) x(-2t)
	(i) $x(t-3)$
	(iii) $\mathbf{x}(t)\mathbf{u}(t)$
	(iv) x(-t+1)
	$-2 -1 \qquad $
	Solution:
	\mathbf{i} $\mathbf{x}(-2\mathbf{t})$
	x(-2t) 2
	-1.5
	ii) x(t-3)
	x(t-3)
	2

AE57/AC51/AT57

	(ii) $x(n) = 1 + 2\cos\left[\frac{\pi}{8}n + \pi/6\right]$
	x(n) is periodic with period $N = 16$
	Using Euler's formula
	$x(n) = 1 + \left[e^{j \left[\frac{\pi}{8} n + (\pi/6) \right]} + e^{-j \left[\frac{\pi}{8} n + (\pi/6) \right]} \right]$
	$=e^{-j\frac{\pi}{8}}\underbrace{e^{-j(\pi/6)n}}_{k=-1}+\underbrace{e^{-j(0)n}}_{k=0}+\underbrace{e^{j\frac{\pi}{8}}e^{j[\pi/6]n}}_{k=1}$
	Comparing with DTFS equation
	$\int e^{-jj(\pi/6)} k = -1$
	k = 1
	$X(k) = \begin{cases} 1 & k = 0 \\ ii(\pi/6) & k = 1 \end{cases}$
	$e^{j(k+3)}$ $k=1$
	$\begin{bmatrix} 0 & -7 \le k \le 8 k \ne 0, \pm 1 \end{bmatrix}$
Q3 (b)	State and prove the following Fourier series properties of continuous
	periodic signals. (i) Fraguency shift property
	(ii) Scaling property
	Solution:
	(i) Frequency shift Property
	Table 3.1. Page No. 206 of Text Book - I
	(ii) Scaling property
	If $x(t)$ is a periodic signal then $f(t)=x(at)$ is also periodic. If $x(t)$ has fundamental period T then $f(t)$ has fundamental period T/a If $x(t) \leftrightarrow X[k]$ then
	$x(at) \leftrightarrow X[k]$
	I.e Fourier series coefficients of $x(t)$ and $x(at)$ are identical
	Proof: since $f(t)$ has fundamental period T/a

	$F[k] = \frac{a}{T} \int_{\frac{T}{a}} f(t) e^{-jkw_0 t} dt$
	$F[k] = \frac{a}{T} \int_{\frac{T}{a}} x(at) e^{-jkw_0 t} dt$
	Put p=at then t=p/a and dt= $(1/a)$ dp
	$F[k] = \frac{a}{T} \int_T x(p) e^{-jkw_0 p} dp \frac{1}{a}$
	$F[k] = \frac{1}{T} \int_T x(p) e^{-jkw_0 p} dp$
	$\therefore F[k] = X[k]$
	If $x(t) \leftrightarrow X[k]$ then
	$x(at) \leftrightarrow X[k]$
Q4 (a)	State and prove Parseval's energy theorem for continuous aperiodic signals.
	Solution:
	Statement: The energy may be found from the time signal $\mathbf{x}(t)$ on its energy $ \mathbf{Y}(is) $
	The energy may be found from the time signal $x(t)$ or its spectrum $ X(j\omega) $
	i.e $E = \int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$
	Proof: Energy of a signal x(t) is given by
	$E = \int_{-\infty}^{\infty} x(t) ^2 dt = \int_{-\infty}^{\infty} x(t)x^*(t)dt - \dots $
	The Fourier transform and its inverse is
	$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
	$\mathbf{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(j\omega) \mathbf{e}^{j\omega t} d\omega$
	Taking conjugate for the above equations
	$X^*(j\omega) = \int_{-\infty}^{\infty} x^*(t) e^{j\omega t} dt \qquad(2)$
	$x^{*}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X^{*}(j\omega) e^{-j\omega t} d\omega$
	Substitute x(t) in equation (1)

	$E = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \right] x^{*}(t) dt$ $E = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) d\omega \int_{-\infty}^{\infty} x^{*}(t) e^{j\omega t} dt$
	Using equation (2)
	$\mathbf{E} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(j\omega) \mathbf{X}^*(j\omega) d\omega$
	$\mathbf{E} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\mathbf{j}\omega) ^2 \mathrm{d}\omega$
	This relation is called "Parsavel's theorem" or "Rayleigh's energy theorem".
Q4 (b)	The transfer function of the system is given by:
	$H(j\omega) = \frac{j\omega}{2}$
	$(j\omega)^2 + 3(j\omega) + 2$
	Find the system equation and also impulse response of the system.
	Solution:
	$H(jw) = \frac{jw}{(jw)^2 + 3(jw) + 2}$
	$\frac{Y(jw)}{X(jw)} = \frac{jw}{(jw)^2 + 3(jw) + 2}$
	$X(jw)(jw) = Y(jw)[(jw)^{2} + 3(jw) + 2]$
	Taking IFT
	$\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + 3\frac{\mathrm{d} y(t)}{\mathrm{d}t} + 2y(t) = \frac{\mathrm{d} x(t)}{\mathrm{d}t}$
	$H(jw) = \frac{jw}{(jw)^2 + 3(jw) + 2}$
	Let m=jw
	$H(jw) = \frac{m}{(m)^2 + 3(m) + 2} = \frac{A}{m+2} + \frac{B}{m+1}$

	$H(jw) = \frac{2}{m+2} + \frac{-1}{m+1}$
	$H(iw) = \frac{2}{m+1} + \frac{-1}{m+1}$
	jw+2 $jw+1$
	Tahing IFT $u \sin g$ relation
	$e^{-at} u(t) \leftrightarrow \frac{1}{a+jw}$
	$\therefore h(t) = 2e^{-2t}u(t) - e^{-t}u(t)$
Q5 (a)	State and prove the following properties of discrete time Fourier
	Transform. (i) Time shifting property
	(ii) Differentiation in frequency domain
	Solution:
	i) Time shifting property: Statements:
	If $x(t) \xleftarrow{FT} X(j\omega)$
	then $x(t-t_0) \xleftarrow{FT} X(j\omega) e^{-j\omega t_0}$
	Shift in time domain will result in multiplying by an exponential in frequency domain
	Proof. $F\{x(t-t_0)\} = \int_{-\infty}^{\infty} x(t-t_0)e^{-j\omega t} dt$
	Let $t - t_0 = \tau$
	$t = \tau + t_0$ and $dt = d\tau$
	$=\int_{-\infty}^{\infty}x(\tau)e^{-j\omega(\tau+t_0)}d\tau$
	$=\int_{-\infty}^{\infty}x(\tau)e^{-j\omega\tau}d\tau \ e^{-j\omega t_0}$
	ii) Differentiation in time domain property:
	If $x(t) \xleftarrow{FT} X(j\omega)$
	Then $\frac{dx(t)}{dt} \leftrightarrow (jw)X(j\omega)$
	Differentiating a signal in time domain is same as multiplying their spectrum

	in frequency domain
	Proof:
	Inverse FT
	$x(t) = \frac{1}{2\pi} \int X(jw) e^{jwt}$
	Differentiating with respect to t
	$\frac{dx(t)}{dt} = \frac{1}{1} \int (i w) X(i w) e^{i w t}$
	$\frac{dt}{dt} = \frac{1}{2\pi} \int (fw) A(fw) e^{-\frac{1}{2\pi}} \int (fw) e^{-\frac{1}{2\pi}} \int (f$
	From the above equation we have
	$\frac{dx(t)}{dt} \leftrightarrow (iw) X(iw)$
	dt
Q5 (b)	Consider a discrete time LTI System with impulse response.
	h [n] = $\alpha^n \mathbf{u}$ [n] where $ \alpha < 1$. Use Fourier Transform to determine the
	response to the input $x[n] = \beta^n u[n]$ with $ \beta < 1$
	Solution:
	Example 5.12 Page no. 285 of Taxt Book J
06 (a)	Determine the Nyquist rate for the following signals
Qu(a)	beter mine the hyperst rate for the following signals i) $x(t)=1+\cos(200\pi t)+4\sin(400\pi t)$
	$\begin{array}{l} 1) x(t) = 1 + \cos(200\pi t) + 4\sin(400\pi t) \\ \text{ii} x(t) = 2\cos(600\pi t) \cos(800\pi t) \\ \end{array}$
	$(1) x(t) = 2 \cos(000\pi t) \cos(000\pi t)$
	Solution:
	i) $x(t) = 1 + \cos(200\pi t) + 4\sin(400\pi t)$ $f_1 = 100 \text{ Hz and}$
	f 200 H-
	$I_2 = 200 \text{ Hz}$ f_z = -2fm = -2x200-400Hz
	$1_{Nyq} - 21111_{(max)} - 2X200 - 400112$
	ii) $x(t) = 2\cos(600\pi t)\cos(800\pi t)$
	= $[\cos 1400 \pi t] + \cos (200 \pi t)]$
	$f_1=700$ Hz and
	$t_2 = 100 \text{ Hz}$
	$I_{Nyq} = 2Im_{(max)} = 2X/00 = 1400HZ$
Q0 (D)	with diagrams explain sampling of discrete time signals.
	Solution:
	Sampling theorem.
	Statement: Let $m(t)$ is a message signal band limited to f_mHz , if this signal is

	sampled at a rate $f_s \ge 2f_m$ then we can reconstruct the message signals from the
	sampled value with minimum distortion.
	i.e $f_s \ge 2f_m$
	where fs is sampling frequency
	and fm is maximum message frequency
	Let m(t)=message signal
	$m(t) \leftrightarrow M(f)$
	$\delta_T(t) = \sum_n \delta(t - nT)$ is periodic delta function with Fourier series
	$\delta_T(f) = \frac{1}{T} \delta(f - nf_s)$
	Sampled signal $S(t)=m(t)\partial_T(t)$
	Multiplication in time domain is same as convolution in frequency domain $\therefore S(f) = M(f) * \delta_T(f)$
	$= M(f) * \left[\frac{1}{T} \sum \delta_T (f - nf_s) \right]$
	Convolving any function with delta function yield the same function
	$\therefore S(f) = \frac{1}{\tau} \sum M(f - nf_s)$
	I_n
	Spectrum of sampled signal is periodic with period is.
Q6 (c)	Find the frequency response and impulse response of the
	system with input
	$\mathbf{x}(t) = \mathbf{e}^{-2t} \mathbf{u}(t)$ and output $\mathbf{y}(t) = \mathbf{e}^{-3t} \mathbf{u}(t)$.
	Solution:
	Applying FT for input and output signal
	$x(t) = e^{-2t} \mu(t)$
	$F\{x(t)\} = X(jw) = \frac{1}{2}$
	$y(t) = e^{-3t}u(t)$
	$F\{y(t)\} = Y(jw) = \frac{1}{3+jw}$
	Frequencyre response
	$H(jw) = \frac{Y(jw)}{X(jw)} = \frac{2+jw}{3+jw} = 1 - \frac{1}{3+jw}$
	Taking IFT
	$h(t) = \delta(t) - e^{-3t}u(t)$

Q7 (a)	Find, the output y(t) of the system described by the differential equation
	$\frac{dy(t)}{dt}$ + 5y(t) = x(t) by Laplace Transform method. Assume that the input
	$\mathbf{x}(t) = 3e^{-2t}\mathbf{u}(t)$ and initial condition is $\mathbf{y}(0^+) = -2$.
	Solutions
	Solution:
	$\frac{dy(t)}{dt} + 5y(t) = x(t) = 3e^{-2t}u(t), y(0^+) = -2$
	Taking Laplace transform
	$sY(s) - y(0^{+}) + 5Y(s) = \frac{3}{s+2}$
	$Y(s) = \frac{1}{(s+2)(s+5)} + \frac{1}{(s+5)}$
	$=\frac{A}{(s+2)}+\frac{B}{(s+5)}-\frac{2}{(s+5)}$
	A = 1 B = -1
	$Y(s) = \frac{1}{(s+2)} + \frac{-1}{(s+5)} - \frac{2}{(s+5)}$
	$Y(s) = \frac{1}{(s+2)} - \frac{3}{(s+5)}$
	TakingInverse LT
	$y(t) = e^{-2t}u(t) - 3e^{-5t}u(t)$
Q7 (b)	Find x(t) from $X(S) = \frac{1}{(1+s)^2}$ Using convolution property
	Solution:
	$X(S) = \frac{1}{(1+s)^2} = \left[\frac{1}{(1+s)}\right] \left[\frac{1}{(1+s)}\right]$
	$e^{-t}u(t) \leftrightarrow \frac{1}{(1+s)}$
	Convolution property of LT is

	$x(t) = x_1(t) * x_2(t) \leftrightarrow X_1(w) X_2(w)$
	$\therefore x(t) = \int_{-\infty}^{\infty} e^{-\tau} u(\tau) e^{-(t-\tau)} u(t-\tau) d\tau$
	$=te^{-t}, for t > 0$
	$\therefore x(t) = te^{-t}u(t)$
Q7 (c)	Find the inverse Laplace transform of $X(s) = \frac{2}{2}$
	$s^{2} + 4s + 8$
	Solution:
	$\mathbf{X}(\mathbf{c}) = 2$
	$X(s) = \frac{1}{s^2 + 4s + 8}$
	$=\frac{2}{2}$
	$(s+2)^2+4$
	Using the relation
	a
	$\sin(at)u(t) \leftrightarrow \frac{a}{s^2 + a^2}$
	$e^{-bt}\sin(at)u(t) \leftrightarrow \frac{a}{(s+b)^2 + a^2}$
	ILT
	$x(t) = e^{-2t} \sin(2t)u(t)$
Q8 (a)	Find the Z-transform of the following sequence and find the ROC
	(i) $x[n] = \left[\frac{1}{3}\right]^{n-2} \sin \Omega_0 (n-2) u[n-2]$
	(ii) $x[n] = 5\left(\frac{1}{2}\right)^n u[n] - 2(3)^n u[-n-1]$
	Solution:
(i)	$x[n] = \left\lfloor \frac{1}{3} \right\rfloor^n \sin \Omega_0 n u[n]$
	$\sin \Omega_0 n u[n] \leftrightarrow \frac{z^{-1} \sin \Omega_0}{1 - 2z^{-1} \cos \Omega_0 + z^{-2}} \text{ROC} \ z > 1$
	Using scaling property

	$\left[\frac{1}{3}\right]^{n} \sin \Omega_{0} n u[n] \leftrightarrow \frac{\{1/3\} z^{-1} \sin \Omega_{0}}{1 - (2/3) z^{-1} \cos \Omega_{0} + \frac{1}{\alpha} z^{-2}} \text{ROC} z > \frac{1}{3}$
	Using shifting property
	$\left[\frac{1}{3}\right]^{n-2} \sin \Omega_0(n-2) u[n-2] \leftrightarrow \left[\frac{\{1/3\}z^{-1} \sin \Omega_0}{1-(2/3)z^{-1} \cos \Omega_0 + \frac{1}{9}z^{-2}}\right] Z^{-2}$
	$\left[\frac{1}{3}\right]^{n-2}\sin\Omega_0(n-2)u[n-2] \leftrightarrow \left[\frac{\{1/3\}z^{-3}\sin\Omega_0}{1-(2/3)z^{-1}\cos\Omega_0+\frac{1}{9}z^{-2}}\right] \text{ROC} \ \left z\right > \frac{1}{3}$
	$(\cdot, \cdot)^n$
(ii)	$x[n] = 5\left(\frac{1}{2}\right) u[n] - 2(3)^n u[-n-1]$
	$X(z) = 5\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} - 2\sum_{n=-\infty}^{-1} 3^n z^{-n}$
	$X(z) = 5\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} - 2\sum_{n=1}^{\infty} 3^{-n} z^n$
	$X(z) = 5\sum_{n=0}^{\infty} \left(\frac{z^{-1}}{2}\right)^n - 2\sum_{n=1}^{\infty} (3^{-1}z)^n$
	$X(z) = 5 \cdot \left[\frac{z}{z - \frac{1}{2}} \right] + 2 \left[\frac{z}{z - 3} \right]$
	ROC: $ z < 3$ and $ z > 1/2$,
$\mathbf{O8}(\mathbf{h})$ (i)	Roc: $(1/2) < z < 3$ State and prove
20(0) (1)	 (i) Initial value theorem of z-transform (ii) Time Expansion property of z-transform
	Solution:
	1) Initial value theorem:
	Statement: If $x(n)$ is causal and
	$x[n] \leftrightarrow X(z)$
	then $x(0) = \lim_{z \to \infty} X[Z]$
	Proof: By definition

	$X(z) = \sum_{\eta = -\infty}^{\infty} x[n] z^{-n}$ For causal x(n) $X(z) = \sum_{\eta = 0}^{\infty} x[n] z^{-n}$ $X(z) = x(0) + x(1) z^{-1} + x(2) z^{-2} + x(3) z^{-3}$ Taking limit $z \to \infty$ on both side $\lim_{z \to \infty} X(z) = \lim_{z \to \infty} [x(0) + x(1) z^{-1} + x(2) z^{-2} + x(3) z^{-3}$] $\therefore \lim_{z \to \infty} X(z) = x(0)$
Q8 (b) (ii)	Page no. 769 to 770 of Text Book – I
Q9 (a)	Define the following terms with refers to probability theory (i) Sample space (ii) Event (iii) Mutually exclusive event (iv) Conditional probability (v) Joint probability (vi) Power spectral density
	Solution:
	Sample space:
	Set consists of all possible outcome of an experiment
	Event:
	Event is a subset of a sample space
	Mutually exclusive event:
	If two events are mutually exclusive then there is no common element between them.
	Conditional probability:

	Probability of an event depends on some other event
	P(A/B)-probability of event A after the event B is over.
	Joint Probability:
	P(AB)=P(A)P(B/A) if A and B are statistically independent then, P(AB)=P(A)P(B)
	The power spectral density:
	PSD, describes how the power (or variance) of a time series is distributed with frequency. Mathematically, it is defined as the Fourier Transform of the autocorrelation sequence of the time series
Q9 (b)	What is wide sense stationary process mention its properties.
	Solution: A random process $\mathbf{V}(t)$ is called wide sone stationary if it satisfies
	A fandom process $A(t)$ is cancel while sense stationary if it satisfies
	1. Mean of the process is constant
	2. autocorrelation function is independent of time
	3. variance of the process is constant
Q9 (c)	(i) Coussian processes
	(i) Ergodic processes
	(ii) Ligoure processes
	Solution:
	(i) Gaussian processes - Page no. 54 to 58 of Text Book - II
	(ii) Ergodic Processes - Page no. 41 to 42 of Text Book – II

TEXT BOOKS

1. Signals and Systems, A.V. Oppenheim and A.S. Willsky with S. H. Nawab, Second Edition, PHI Private limited, 2006

2. Communication Systems, Simon Haykin, 4th Edition, Wiley Student Edition, 7th Reprint 2007