TYPICAL QUESTIONS & ANSWERS

 

PART - I

OBJECTIVE TYPE QUESTIONS

 

 

Each Question carries 2 marks.

 

Choose correct or the best alternative in the following:

 

Q.1       The value of limit  is

 

                   (A)  0                                                  (B)  1

(C)    2                                                 (D)  does not exist

                

 

                           Ans: D

 

Q.2       If , then  equals

 

(A)    0                                                  (B)  u

(C)  2u                                                (D)  3u

       

             Ans: A    

Q.3       Let .  Then  the value of  is

            

(A)    *                                            (B)  0

(C)                                              (D) 

 

 

             Ans: B

Q.4       The value of  is

 

(A)    1                                                      (B)

(C)                                              (D)  3       

 

             Ans: A

 

 

 

Q.5       The solution of  is                                                               

(A)                                           (B) 

(C)                                      (D) 

 

             Ans: C

 

Q.6       The solution of  is  

 

(A)     sin x                                             (B)  cos x

(C)  x sin x                                          (D)  x cos x

 

             Ans: D

 

Q.7 .     Let    and  be elements of .  The set of vectors  is

 

(A)     linearly independent                      (B)  linearly dependent

(C)  null                                               (D)  none of these

 

             Ans: A

Q.8       The eigen values of the matrix  are

(A)    * and 1                                  (B) 0, 1 and 2

(C) –1, 2  and 4                                (D) 1, 1 and –1

 

             Ans: A

       

Q.9       Let , ,  be the Legendre polynomials of order 0, 1, and 2, respectively.  Which of the following statement is correct? 

 

(A)             (B)

(C)              (D)

 

                           Ans: B

 

 

 

 

 

 

 

 

 

 

Q.10     Let  be the Bessel function of order n.  Then  is equal to   

(A)                                    (B) 

(C)                                 (D)

Ans: D

Q.11     The value of limit  

                   (A)  0                                                  (B)  

(C)                                             (D)  does not exist

 

                           Ans:  D                                                                                                        

 

 

Q.12       Let a function f(x, y) be continuous and possess first and second order partial derivatives at a point (a, b).  If  is a critical point and , ,  then the point P is a point of relative maximum if 

 

(A)                           (B)   

(C)                           (D) 

 

             Ans:  B                                                         

 

Q.13           The triple integral  gives

                         (A)  volume of region T                        (B)  surface area of region T

(C)  area of region T                            (D)  density of region T

 

                           Ans:  A

 

Q.14           If  then matrix A is called

(A) Idempotent Matrix                        (B) Null Matrix

(C)  Transpose Matrix                        (D)  Identity Matrix           

 

                           Ans:  A

 

Q.15           Let  be an eigenvalue of matrix A then , the transpose of A, has an eigenvalue as            

(A)                                                  (B) 

(C)                                                   (D) 

 

             Ans:  C

 

Q.16           The system of equations is said to be inconsistent, if it has 

(A)  unique solution                              (B)  infinitely many solutions

(C)  no solution                                    (D) identity solution

 

             Ans:  C

 

Q.17           The differential equation  is an exact differential equation if  

(A)                                     (B) 

(C)                                     (D) 

             Ans:  B

 

Q.18           The integrating factor of the differential equation  is  

(A)                                                  (B)

(C) xy                                                 (D)

                           Ans:  D

 

Q.19           The functions  defined on an interval I, are always  

(A) linearly dependent                          (B) homogeneous

(C) identically zero or one                    (D) linearly independent

 

                           Ans:  D

 

Q.20     The value of , the second derivative of Bessel function in terms of  and  is   

(A)                             (B) 

(C)                            (D)

             Ans:  C

 

Q.21                                                                      The value of limit    is

                  (A) 0                                                    (B) 1

                  (C) -1                                                   (D) does not exist

 

             Ans:  A

 

Q.22          If  , the total differential of the function at the point (1, 2) is

                  (A) e (dx + dy)                                     (B) e2(dx + dy)

                  (C) e4(4dx + dy)                                   (D) 4e4(dx + dy)

 

             Ans:  D

 

Q.23          Let  , x > 0, y > 0  then

             equals

                  (A) 0                                                    (B) 2u

                  (C) u                                                    (D) 3u

 

             Ans:  B

 

Q.24       The value of the integral  over the domain E bounded by planes                       x = 0, y = 0, z = 0, x + y + z = 1 is

                  (A)                                                 (B)

                  (C)                                               (D)

 

             Ans:  C

 

Q.25       The value of α so that  is an integrating factor of the differential equation  is

                  (A) -1                                                   (B)   1

                  (C)                                                   (D)

 

             Ans:  C

 

Q.26       The complementary function for the solution of the differential equation  is obtained as

                  (A) Ax + Bx -3/2                                    (B) Ax + Bx 3/2

                  (C) Ax2 + Bx                                        (D) Ax -3/2 + Bx 3/2

 

             Ans:  A

 

Q.27       Let  be elements of R3. The set of vectors  is

                  (A) linearly independent                        (B) linearly dependent

                  (C) null                                                 (D) none of these

 

             Ans:  A

Q.28       The value of µ for which the rank of the matrix  is equal to 3 is

                  (A) 0                                                    (B) 1

                  (C) 4                                                    (D) -1

 

             Ans:  B

 

Q.29       Using the recurrence relation, for Legendre’s polynomial                                                             (n + 1) , the value of P2 (1.5) equals to

                  (A) 1.5                                                 (B) 2.8

                  (C) 2.875                                             (D) 2.5

 

             Ans:  C

 

Q.30       The value of Bessel function J2(x) in terms of J1(x) and J0(x) is

                  (A) 2J1(x) – x J0(x)                               (B)

                  (C)                            (D)

 

             Ans:  D

Q.31                                 The value of the integral  where C is the contour  is

                   (A)  .                                            (B)  .

                   (C)  0.                                                 (D)  .

           

Ans: C

Because z = 1 is a pole for given function f and it lies outside the circle

|z| = ½  .   Therefore, by Cauchy’s Theorem

Q.32                                                                      If X has a Poisson distribution such that  then the variance of the distribution is 

                   (A) 1.                                                  (B)  -1.

(C)  2.                                                 (D)  0.

            

             Ans: A

            Because P (x = 2)  =  9 P (x = 4)  +  90 P (x = 6)

            =>       

            =>       

            Because m¹0,  Therefore, 3m2 + m4 – 4 = 0

            =>        m = 1

 

Q.33           The vector field function  is called solenoidal if

            

(A)     curl =0.                                     (B)  div =0.

                   (C)  grad =0.                                    (D)  grad div =0.

            

             Ans: B

A vector field  is solenoidal if div = 0

Q.34           The number of distinct real roots of   in the interval  is

                   (A)  0.                                                 (B)  2.

(C)    3.                                                 (D)  1.

 

             Ans: D

=>    (cos x – sin x)2 (sin x + 2 cos x) = 0

Its only root which lies in .

 

Q.35           The solution of :  is

                   (A)  .                 (B) .

(C)  .                 (D) .

             Ans: A

2y sin x + cos 2x  =  a

            I.F.      

            Therefore, the solution is given as

            =>        2y sin x  +  cos 2x  =  a

 

Q.36           If  then  is equal to 

                   (A)  .                          (B)  .

(C)  .                         (D)  .

             Ans: A

 

where u and v are homogeneous functions of order 6 and  0 respectively.  Using Euler’s theorem    =  6 u + 0 v  =   6 u.

            

Q.37           The value of Legendre’s Polynomial,  is

                   (A)  1.                                                 (B)  -1.

                   (C)  .                                        (D)  0.

 

             Ans:  D

By Rodrigue’s formula,

            Pn(0) = 0          if n is odd.

            

Q.38                                                                      The value of integral over the region bounded by the line  y = x and the curve  is

                   (A)  .                                             (B)  .

                   (C)  .                                             (D)  .     

             Ans: C

   =

Q.39               The value of the integral  where C is the semi-circular arc above the real axis is

                   (A)  .                                              (B)  .

                   (C)  .                                           (D)  .

            Ans: A

            Let z = eiq         then

               =  i p

Q.40                                                                      Residue at z = 0 of the function  is

(A) .                                                (B)  .

(C)  .                                               (D)  .

            Ans: B

Let

Residue = coefficient of

Q.41                                                                      In solving any problem, odds against A are 4 to 3 and odds in favour of B in solving the same problem are 7 to 5.  The probability that the problem will be solved is

(A)     .                                             (B)  .

                   (C)  .                                             (D)  .

            Ans: B

            P(A) = ,       P(B) = . Probability problem will be solved i.e. P(AÈB)

P(AÈB) = P(A) + P(B) – P(AB)

Because A & B are independent, So P(AB) = P(A) P(B)

P(AÈB) =      

Q.42                                                                      The value of the integral  over the area in the first quadrant by the curve  is

                   (A)  .                                           (B)  .

(C)    .                                             (D)  .

Ans: D

              

 over x2 – 2ax + y2 = 0

=

Q.43                                                                      The surface  will be orthogonal to the surface  at the point  for values of a and b given by

(A)     a = 0.25, b = 1.                           (B)  a = 1, b = 2.5.

(C)  a = 1.5, b = 2.                              (D) .

            Ans: A

            a= 0.25, b = 1

Let F = ax2 – byz – (a + 2) = 0

G = 4x2y + z3 – 4 = 0

These surfaces will be orthogonal if


Also since (1, -1, 2) lies on F

\         a + 2b – a – 2 = 0                         b = 1 , thus       a =

Q.44           If  and  and if z = u + v then  equals

(A)     4 v.                                              (B)  4 u.

(C)  2 u.                                              (D)  4 u + v.

           

Ans: C

             z = u + v

i.e. u is homogeneous function of degree 2 and v is homogeneous function of degree 0. By Euler’s Theorem,

Q.45           The series  equals

                   (A)  .                                       (B)  .

                   (C)  .                                      (D)  .

           

Ans: C

           

Q.46                                                                      The value of integral , where  is a Legendre polynomial of degree 3, equals

                   (A)  .                                             (B)  0.                                                  

                   (C)  .                                             (D)  .   

           

Ans: D

            As       

Q.47                                           For what values of x, the matrix  is singular?

                   (A)  0, 3                                              (B)  3, 1

                   (C)  1, 0                                              (D)  1, 4

            

             Ans: A

The matrix is singular if its determinant is zero. Solving determinant, we get equations

x(x-3)2=0.                  

 

Q.48                                                                      If  then  

(A) 3 ab                                              (B)  2 abz

(C)  abz                                               (D)  3 abz

            

             Ans: B

 

 

Because

            

Q.49           The value of the integral  is

                   (A) *.                                               (B)  2.

                   (C)  -2.                                               (D)  0.

            

             Ans: D

            Since it is an odd function.

 

Q.50           If  and  then div

                   (A)  5                                                  (B)  5u

(C) *                                               (D)  0

            

Ans: B

Q.51           The solution of the differential equation  is given as  

                   (A)                          (B)

(C)                            (D)       

           

Ans: A

Dividing by z, we get

            ,

            Let 1/(log z)=u, then above differential equation becomes

           

           

Q.52           The value of the integral  where C is the circle  is given as    

(A) *                                               (B) 

(C)  0                                                  (D) 

            

             Ans: C

The given function has a pole at z=1, which lies outside the circle C. So by Cauchy’s theorem integral is zero.

Q.53           The value of the Legendre’s polynomial   if

                    (A)                                          (B) 

                    (C)                                          (D)  

            

             Ans: D

             By orthogonal property of Legendre’s polynomial.

            

Q.54                                                                      Two persons A and B toss an unbiased coin alternately on the understanding that the first who gets the head wins.  If A starts the game, then his chances of winning is

                   (A)                                                (B) 

                    (C)                                               (D)     

           

Ans: C

Probability of getting head=1/2= probability of getting tail.

If A starts the game, then in first chance either A wins the game, in second case A fails, B fails and A won the match and so on, we get an infinite series. Let HA, HB, TA, TB, denotes the getting of head and tails by A and B respectively.

P(wining of A)=P(HA)+P(TATBHA)+ P(TATBTATBHA)+…….

            =    

            This is an infinite G.P. series with common ratio 1/4. Thus

            P(winning of A) = .

Q.55                                                                                        The value of limit

                   (A)  equals 0.                                      (B)  equals .

                   (C)  equals 1.                                      (D)  does not exist.

            

             Ans: D

Let y= mx2 be equation of curve. As x→0, y also tends to zero.

            *

   =*

, which depends on m.

Thus it does not exist.

            

Q.56                                                                      If  then  equals

(A) .                                 (B)  .

(C)  .                                    (D)  .

            

             Ans: A

Eliminating we get

     

 

Q.57           The function  has

                   (A)  a minimum at (0, 0).                     

(B)     neither minimum nor maximum at (0, 0).

(C)     a minimum at (1, 1).                    

(D)    a maximum at (1, 1).

            

             Ans: B

f (x, y) = y2 – x3

fx =       - 3x2     = 0       ,           fy =       2y        = 0

            gives (0,0) is a critical point.

            f (x, y) = f(∆x,∆y)= (∆y)2 –(∆ x)3

                        > 0 ,     if          (∆y)2 >(∆ x)3

                        < 0 ,     if          (∆y)2 < (∆ x)3

This means in the neighborhood of (0,0) f changes sign. Thus (0,0) is neither a point of  maximum nor minimum.

 

Q.58                                                                      The family of orthogonal trajectories to the family , where k is an arbitrary constant, is

                   (A)  .                         (B)  .

(C) .                            (D)  .

            

             Ans: A

y  = (x – k)2      Diff. w.r.t. x

            y1         =          2(x – k)            =>        y1         =          2

            For orthogonal trajectories y1 is replaced by -1/y1.

            Therefore,        -1/y1     =          2

            =>        2dy + dx    =   0

Integrating, we get        y3/2 =    ¾ (c-x)

 

Q.59                                                                      Let  be two linearly independent solutions of the differential equation .  Then , where are constants is a solution of this differential equation for   

                   (A) .                         (B) .

(C)  no value of .                       (D) all real . 

            

             Ans: B

yy – (y)2 = 0

            Because, y1, y2 are solutions

            Therefore,        y1y1 – (y1)2 = 0

                                    y2y2 – (y2)2 = 0

            Now    (c1y1 + c2y2) (c1y1 + c2y2) – ((c1y1 + c2y2))2   

            =          (c1y1 + c2y2) (c1y1 + c2y2) – (c1y12 + c2y22) - 2 c1y1c2y2

            = c12(y1y1 – (y1)2) + c22 (y2y2 – (y2)2) + c1 c2 (y1 y2+y2y1 - 2y1y2)

            =          0,           if c1c2  = 0.

 

Q.60           If A, B are two square matrices of order n such that AB=0, then rank of     

(A) at least one of A, B is less than n.  

(B)     both A and B is less than n.

(C)     none of A, B is less than n.          

(D)    at least one of A, B is zero.

            

             Ans: B

             Since A, B are square matrix of order n such that AB = 0, then rank of both A             and B is less than n.

 

Q.61           A  real matrix has an eigen value i, then its other two eigen values can be

                   (A)  0, 1.                                             (B)  -1, i.

                    (C)  2i, -2i.                                         (D)  0, -i.

            

             Ans: D

             Because i is one eigen value so another eigen value must be – i.                       

Q.62                                                                      The integral, n>1, where  is the Legendre’s polynomial of degree n, equals

 

                    (A)  1.                                                (B) .

                    (C)  0.                                                (D)  2.

           

Ans: C

Let I =

            Let cosq = t.                 –sinqdq = dt

  

=          0  

Q.63    The value of limit  is

(A)       0                                              (B)       1

(C)       limit does not exist                    (D)       -1

 

 

Ans.:   A        

            Language of the question is not up to the mark in the sense that its statement does not go with all the alternatives consequently, change is in order.

The suggested change is  either satisfies the statement given in the alternative (C) or assumes the value given in one of three remaining alternatives A, B and D.

 

Q.64    If   then the value of  is equal to

(A)       0                                              (B)      

(C)                                              (D)      

 

Ans.:   B

Since taking log on both sides we get log(u)=y log(x)

 

Q.65    If  , then the value of  is

(A)       z                                               (B)       2z

(C)       tan(z)                                        (D)       sin(z)

 

Ans.:   C

            If  u(x,y) = , is a homogeneous function of degree n, then from Euler’s theorem

            = nu.

            Here  = is a homogeneous function of degree 1.

            Therefore         u = sin z

            From u = sin z; ,

 

Q.66    The value of integral is equal to

(A)                                                   (B)      

(C)                                                   (D)      

 

Ans.:   B

 

Q.67    The differential equation of  a family of circles having the radius r and the centre on the x-axis is given by

(A)                         (B)      

(C)                         (D)      

 

Ans.:        A

Let (h,0) be centre on x-axis. Thus eq. of circle is

Differentiating, w.r. to x, we get

Eliminating h between  and

We get .

Q.68    The solution of the differential equation satisfying the initial conditions y(0)=1, y(π/2) = 2 is

(A)       y = 2cos(x) + Sin(x)                 (B)       y = cos(x) + 2 sin(x)

(C)       y = cos(x) + Sin(x)                   (D)       y = 2cos(x) + 2 sin(x)

 

 

Ans.:   B        

On solving the differential equation  , we get  y = Acosx + Bsin x, Since

y(0)=1, Thus,  y = cos(x) + 2 sin x

 

Q.69    If  the matrix  then

(A)       C=Acos(θ) – Bsin(θ)                (B)       C=Asin(θ) + Bcos(θ)

(C)       C=Asin(θ) – Bcos(θ)                (D)       C=Acos(θ) + Bsin(θ)

 

 

Ans.:   D        

 

Q.70    The three vectors (1,1,-1,1), (1,-1,2,-1) and (3,1,0,1) are

(A)       linearly independent                  (B)       linearly dependent

(C)       null vectors                               (D)       none of these.

 

Ans.:   B

Let a,b,c be three constants such that a(1,1,-1,1)+b (1,-1,2,-1) +c(3,1,0,1)=(0,0,0,0).

This yields a + b + 3c = 0, a – b + c = 0, -a + 2b = 0, a – b + c = 0.

On solving, we get a = 2b = -2c  b = - c. Since a, b, c are non-zero, therefore three vectors are linearly dependent.

 

Q.71    The value of is equal to

(A)       1                                              (B)       0

(C)                                                   (D)      

Ans.:   B        

 

Q.72      The value of the integral  is

(A)                         (B)      

(C)                      (D)      

 

Ans.:   C        

. Here v=1.

Q.73    The value of limit  is

(A)       limit does not exist        (B)       0

(C)       1                                  (D)       -1

 

Ans.:   A        

Consider the path y = mx2 As (x,y)→(0,0), we get x →0. Therefore

 which depends on m. Thus limit does not exist.

 

Q.74      If   then the value of  is equal to

(A)       0                                  (B)      

(C)                                  (D)      

 

Ans.:   B        

            Since taking log on both sides we get log(u)=y log(x)

 

Q.75      If  , then the value of  is

(A)       u                                  (B)       2u

(C)       3u                                (D)       0

 

Ans.:   D        

Let

Here  and  are homogenous functions of degree zero.

Consequently

Or ; similarly .

;

= 0 + 0 = 0.

 

Q.76     The value of integral is equal to

(A)       22                                (B)       26

(C)       5                                  (D)       25

Ans.:   B        

 

Q.77    The solution of the  differential equation  is given by

(A)         (B)      

(C)           (D)      

 

Ans.:   A

Let x + y = t, Differentiating w r to x we get

           

            Or ,

            ;  integrating we get

           

            Or  or .         

 

Q.78    The solution of the differential equation  is

(A)         (B)      

(C)                   (D)      

 

Ans.:   A        

The solution of differential equation is given as C.F.

 P.I. =

In writing the C.F. we have used the roots of the auxiliary equation

i.e.  m = 1, 2. For writing the P.I we have used ;           

 

Q.79    If 3x+2y+z= 0, x+4y+z=0, 2x+y+4z=0, be a system of equations then

(A)              system is inconsistent     

(B)       it has only trivial solution

(C)       it can be reduced to a single equation thus solution does not exist

(D)             Determinant of the coefficient matrix is zero.

 

Ans.     B

, then system has only trivial solution.

 

Q.80    If λ is an eigen value of a non-singular matrix A then the eigen value of A-1 is

(A)       1/ λ                              (B)       λ

(C)                                        (D)       -1/ λ

 

Ans.     A         By definition of A-1.

 

Q.81    The product of eigen value of the matrix  is

 (A)      3                                  (B)       8

(C)       1                                  (D)       -1

 

Ans.:   B

            Eigen values are 1,2,4.

Thus product = 8.

 

Q.82    The value of      the integral is

(A)                         (B)      

(C)                        (D)      

 

Ans.:   C         . Here v=2.

 

Q.83     If   then

(A)                  (B)      

(C)               (D)      

 

Ans.:   B        

Since  is a homogeneous function of degree 0. Thus by Euler’s theorem .

 

Q.84      If  , then the value of  is

(A)       1                                  (B)       r

(C)       1/r                                (D)       0

 

Ans.:   B

           

 

Q.85     The value of integral is equal to

(A)       -4                                 (B)       3

(C)       4                                  (D)       -3

 

Ans.:   C

           

 

Q.86     The solution of  differential equation  under condition y(1)=1 is given by

(A)                       (B)      

(C)                      (D)      

 

Ans.:   B        

            The given differential is a particular case of linear differential equation of first order

            . Here

            . Multiplying throughout by x, it can be written as

            ; Integrating w.r. to x we get

            ; Given y(1) = 1;

             or  which is alternative B.

Q.87     The particular integral  of the differential equation  is

(A)                        (B)      

(C)                        (D)      

 

Ans.:   A

            P.I.  is a case of failure of ;

            In such cases .

Q.88      The product of the eigen values of   is equal to

(A)       6                                  (B)       -8

(C)       8                                  (D)       -6

 

Ans.:   C

.

The eigenvalues are 1,2,4. Thus product of eigen values = 8.

 

Q.89      If then matrix A is equal to

(A)                               (B)      

(C)                             (D)      

 

Ans.:   D

           

                       

 

Q.90      The value of  (m being an integer < n) is equal to

(A)       1                                  (B)       -1

(C)       2                                  (D)       0

 

Ans.:   D        

            Using Rodrigue formula  can be expressed as

           

           

Q.91      The value of the   is

(A)                               (B)      

(C)                    (D)      

 

Ans.:   A

            .

 


PART – II

NUMERICALS

 

  Q.1     Consider the function f (x, y) defined by

                   Find  and . 

                   Is  differentiable at (0, 0)?  Justify your answer.                                                       (8)

       

             Ans:

                  

 

                   The partial derivatives are

 

                  

                   Therefore,   df = 0       

                   Let   dx = r cosq       dy = r sinq                        

                  

                  

                   \  f(X,Y)  is differentiable.

 

 

Q.2      Find the extreme values of  subject to the constraints of  (x, y, z) = 2x + y =0 and h(x, y, z) = x + y + z = 1                                                                                                  (8) 

       

                   Ans:

                          Consider the Auxiliary function

                        

                           For the extremum, we have the necessary conditions

                          

                           From (4)  we get    y = -2x.

                           Taking   y = -2x in (1),  we get  -2x + 2l1 + l2 = 0         -----------(6)

                           (2) & (6)  implies    3l1 + 2l2 = 0         -----------(7)

                           From  (5)   x + y = 1- z.  putting this in (1), we get 2 – 2z + 2l1 + l2 = 0    ----(8)

                           (3)  and  (8)  implies  2l1 + 2l2 = -2         -----------(9)

                           (7)  and  (9)  implies  l1 = 2, l2 = -3              

                                                                 

                  

                           The point of extremum is

       

            

                          The extremum value is                                                                                

    

 

Q.3     Find all critical points of  and determine  relative extrema at these critical points.                                                                      (8)

 

             Ans:

 

                                                        

                   \ The only critical point is (x, y) = (0, 0)                   

                  

                  

                  

 

Q.4       Find the second order Taylor expansion of  about the point .                                                                                         (4)

             Ans:

 

                  

                   Second  order Taylor expansion of   f (x, y) is

                  

                                 

                  

                  

 

Q.5       Change the order of integration in the following double integral and evaluate it :  .                                                                              (4)

 

             Ans:  

 

                   The region of integration is given by      y £ x £ 1     and   0 £ y £ 1.

                   Hence, it is bounded by  the straight lines x= y and x = 1 between y = 0 and y = 1.

 

                                   y

                                                                          x = y

                   y = 1                                                   

 

 

 

 


                y = 0           0                                                         x

                                                                              x = 1

 

                To find the limits of integration in the reverse order, we observe that the region is

                 Also given by       0 £ y £ x   and  0 £ x £ 1                                           

                   Hence,

                                

 

Q.6       Solve the differential equation .                                                                           (4)

            

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Ans:

                  

                   This is linear equation of 1st order

                   I.F. =

                   Solution is

                  

                   .

                   Therefore      is the solution.

 

Q.7       Solve the differential equation .                                          (6)

                   Ans:  

                  

                  

 


                                                      Hence  the  equations is exact. 

 

                 

                  

                  

             \  From  (1)  and   (2)   above,   we get

                  

                   Therefore,    j(y) = -y + c                                  

                   Therefore,

                          

 

Q.8       Find the general solution of the differential equation  by method of undetermined coefficients.                                                                                                            (6)                                                                                                 

             Ans:

                  

                   So the linearly independent solutions of the homogeneous equation are 

                                          

                   The particular solution

                    By the method of undetermined coefficients, the particular solution is in the form     y(z) = c1ez + c2z ez                                            

                  

                    Substituting in the equation(1), we get

                                              

             Hence  the general solution

       

            

             y = c3 Sin2z + c4 Cos2z

             y = c3 Sin2(logx) + c4 Cos2(logx) .

 

Q.9       Find the general solution of the differential equation .                                                                                       (9)

             Ans:

                   This is Cauchy’s homogeneous linear equation.

                   Putting x = et,

                   Then given equation becomes (D(D – 1)(D -2) – D(D-1) + 2D – 2)y = e3t.

                   which is linear equation with constant coefficients.

                   A.E. is .

                   => D = 1, 1, 2.

                   .

                   .

                          = .

                  

 

Q.10           Show that the eigen values of a Hermitian matrix are real.                                                  (7)

 

             Ans:

            

             We have  Ax = lx.         Premultiplying by        ,  we  get

                  

 

 


             The denominator        x   is always real and positive. Therefore the behaviour of l is

             determined by      Ax.                                           

                  

 

Q.11    Using Frobenius method, find two linearly independent solutions of the differential equation .                                                                                             (10)

 

             Ans:

                   The point x = 0 is a regular singular point of the equation.

                  

                  

                   The lowest degree term is the term containing   xr-1.

                   Setting this coefficient to zero,  we get

                  

                   (1)    may be written as

                         

\        For  m  ³  0,  we  get

                          

                   when    r = 0

                                

                           

                            when    r = ½                                                                                                                          

 

Q.12           Solve the following system of equations by matrix method:                                                  (6)

                                                                                                                                    

 

             Ans:

                  

 

                  

                    

                  

                  

                      Therefore    rank(A|b)  =  rank(A)  =  3

                       So   System admits unique solution.                               

                       Now the resultant system is

                       4z = 3   =>  

                       y + 2z = 1    =>  

                       x + y +2z = 0    =>  x = -1.

                          

           

Q.13           Express the polynomial  in terms of Legendre polynomials.                               

                                                                                                                                                              (8)

         Ans:

                  

                                                                              .

                   writing various powers of x in terms of legendre polynomials.

 

                  

                   Now,

                      

                     

 

Q.14         Let  be the Bessel function of order .  Show .                                                                                                                                                                                                               (8)

                                                                                                                            Ans:

              

                                                                                                    Now  we  know  that

                                                                                                              =

                                                                                             =

                                                                     = 

                                                                                 

                                                                                                         = .

 

Q.15           If A is a diagonalizable matrix and f (x) is a polynomial, then show that f(A) is also diagonalizable.                                                                          (7)

 

             Ans:

                  

                   by  induction, we may  show that

       

                  

                   Since   D is a diagonal matrix, f(D) is also diagonal.

                   Thus f(A) is diagonalizable.

       

 

Q.16.    Let.  Find the matrix P so that  is a diagonal matrix.                            (9) 

            

                   Ans:

                   Eigen values are

                  

                   Therefore     l = 2, 2, 4 are Eigen values .

                   Eigen values corresponding to  l = 2  is

                  

                   The eigen vectors are (-2 1 0) T  and  (-1 0 1) T

                   Eigen vector  corresponding to  l = 4  is

                  

                  

                   \   The  eigen vector  is  (1 0 1)T                                               

                  

 

Q.17     Show that the function

                    

                   is continuous at (0, 0) but its partial derivatives  and  do not exist at (0, 0).                                                                                          (8)

         Ans:  We have

                  

                  

                      

                      

                      

                       Hence the given function is continuous at (0, 0)

                   Now at (0, 0),  we have

                  

                   Hence limit does not exist. Therefore fx does not exist at (0, 0).

                   Also at (0, 0),  the limit

                  

                   Hence limit does not exist at (0, 0).

                  

Q.18    Find the linear and the quadratic Taylor series polynomial approximation to the function  about the point (1, 2).  Obtain the maximum absolute error in the region  and  for the two approximations.                                                       (8) 

            

             Ans:

                  

                  

                  

                   The linear approximation is given by

                  

                   Maximum absolute error in the linear approximation is given by

                  

                  

                  

                  

                  

                   The quadratic approximation is given by

                  

                  

                   The maximum absolute error in the quadratic approximation is given by

                  

                  

            

Q.19    Find the shortest distance between the line  and the ellipse .        (8)

 

             Ans:

                   Let (x, y) be a point on the ellipse and (u, v) be a point on the line and the ellipse is the square root of the minimum value of

                  

                   Subject to the constraints

                  

                 

                  

                  

                   Dividing we get 8y=9x. Substituting in ellipse we get

                           

                                                                                            

                                                                                            u = 2v – 2.

 


                   Substituting in the equation of line 2u + v –10 = 0, we get

 


                   Hence an extremum is obtained when (x, y) =

                   The distance between the two points is        .

                  

                  

                  

                   The distance between these two and pts is            .

                  

                    Hence shortest distance between line and ellipse is          .

 

Q.20    Evaluate the double integral , where R is the region bounded by the x-axis, the line y = 2x and the parabola .                                                                                                                 (8)

            

                   Ans:

 

                   The points of intersection of the curves

                  

 

                   The region

 

 

          

                                   

 

                   We evaluate the double integrate as

                  

 

Q.21    Evaluate the integral  where R is the parallelogram with successive vertices at , ,  and .                                                                           (8)

 

             Ans:

                   The region R is given in figure

 

                  

 

                   The equations of the sides AB, BC, CD and DA are respectively

                   x – y = p, x + y = 3p, x – y = -p, x + y = p.

                   Let y – x = u, y + x = v. Then   -p £ u £ p and p £ v £ 3p

                  

                  

                    

 

Q.22                                                                      Show that where  is the Bessel function of  order.                                                                                             (8)

 

                  Ans:

                       We know that

                           

                      

 

                  

                   Substituting  n=0, 1,2, …………..adding we get

                  

                  

                  

                          

                                                                                                                                                

Q.23           Show that .                    (6)

                  

             where  are the Legendre polynomials of order K.

 

             Ans:

                  

                   Integrating by parts

                  

                  

                   Now by orthogenality property, we have

                  

                   If m = n   

                                                      = .

                                                      =

                                                      = .

                   ,   m = n.                                                                   

 

Q.24           Find the power series solution about x =2, of the initial value problem                     

             . Express the solution in closed form.                   (10)

            

             Ans:

                   We have

                  

                   Putting x = 2,  we get

                  

                  

                  

                                                                          

                  

 

Q.25     Solve the initial value problem  y(0) = 0, , .                                                                                           (8)

             Ans:

                   A.E. is

                  

                   m = 1, 2, 3.

                   .

                   y(0) = 0

                   =>

                   y' (0) = 1

                   => 

                   y" (0) = -1

                   =>  .

                   Thus 

                   ~    

                   Solving .

                   Thus solution of initial value problem is .

 

Q.26           Solve .                                                                                  (8)

            

             Ans:

                   Let  x = et.

                   (D(D – 1) + D – 1)y = .

                   A.E.  m2 – 1 = 0.

                                    m =  1.

                   C.F.   .

                   P.I.   = 

                            =

                            =

                            =

                            =

                   .

       

Q.27    Show that set of functions  forms a basis of the differential equation .  Obtain a particular solution when .                                                                (6)

 

             Ans:

                                          

                   Hence y1(x) and y2(x) are solutions of  the given equation.

                   The Wronskian is given by

                  

                   Thus the set{y1(x), y2(x)} forms a basis of the equation.

                   The general solution is

                  

                  

 

Q.28                                                                      Solve the following differential equations:     (25 = 10)

                   (i)    

                   (ii)   

 

                   Ans:

                       (i) ,

                        M = ,

                        .

                       

                       

                        .

                        Thus, the equation is not exact and M, N are homogenous function of degree 2,  

                       

                         Thus equation is

                        

                         Now  M1 = .

                  

                   (ii)

                                                                                         

                           Integrating,  we get

                          

                          

                                                                                                 

 

Q.29    Let  be a linear transformation defined by .  Taking  as a basis in  determine the matrix of linear transformation.                                                                                                                                                               (8)

             Ans:

                   The given matrix which maps the elements in R3 into R2 is a 2 x 3 matrix.

                  

                  

                  

                   Solving these equations, we obtain the matrix    

 

Q.30           If  then show that , for .     Hence find .                                                                                    (8)

                   Ans:

                   The characteristic equation of A is given by

                  

                   Using Cayley Hamilton theorem,  we get

                                  

                  

                   Adding we get

                                  

                  

                   .

 

Q.31     Examine whether matrix A is similar to matrix B, where  , .                                                                                              (8)

             Ans:

                   The given matrices are similar if there exists an inevitable matrix P such that

                  

                  

                  

                   Solving, we get  a = 1, b = 1, c = 1, d = 2

                  

                   Thus                            which is a non-singular matrix. Hence the matrices A and B

 

                   are similar.

 

Q.32           Discuss the consistency of the following system of equations for various values of

                  

                   and if consistent, solve it.                                                                                                   (8)       

                  

 

       Ans:

                   The augmented matrix is 

 

 

              

 

                    rank (A:B) = 3 and rank (A) = 2, hence the system is inconsistent.

                             When l = 7, rank (A:B) = 2 = rank (A), hence consistent.

                              

 

Q.33    Show that for the function f(x, y) = , partial derivatives  and  both exist at the origin and have value 0. Also show that these two partial derivatives are continuous except at the origin.                                                                                                                          (8)

 

            Ans:

                  Now at (0, 0),

                 

                 

                  If the function is differentiable at (0, 0), then by definition , where φ and  are functions of k and h and tend to zero as (h, k) (0, 0). Putting h = r cosθ, k = r sinθ and dividing by r, we get . Now for arbitrary θ, r 0, implies that (h, k) (0, 0). Taking the limit as r 0, we get , which is impossible for all arbitrary θ. Hence the function is not differentiable at (0, 0) and consequently the partial derivatives  cannot be continuous at (0, 0). For (x, y) (0, 0).

 

 

                 

                  =

                  Now as h 0, we can take x + h > 0, i.e.  = x + h, when x > 0 and x + h < 0 or .

                 

                  Similarly,

                 

                  which is not continuous at the origin.

 

Q.34    In a plane triangle ABC, if the sides a, b be kept constant, show that the variations of its angles are given by the relation

                                                                                      (8)

 

                     Ans:

                  By the sine formula we have

                  Taking differentials on both sides, we get a cos B dB = b cos A dA.

                   

                 

                 

                  Also, by the projection rule in triangle ABC we have a cos B + b cos A = c, and

A + B + C = p, we have  dA + dB + dC = 0 or dA + dB = - dC. Therefore, equation (1), becomes

                 

 

Q.35    Find the shortest distance from (0, 0) to hyperbola  in XY plane.            (8)

 

            Ans:

We have to find the minimum value of x2 + y2  (the square of the distance from the origin to any point in the xy plane) subject to the constraint x2 + 8xy + 7y2 = 225.

Consider the function F(x, y) = x2 + y2 + l (x2 + 8xy + 7y2 – 225),   where x, y are independent variables and l is a constant.

Thus dF  = (2x + 2xl +  8yl) dx + (2y + 8xl + 14yl) dy

Therefore, (1+l) x  + 4ly = 0  and,  4lx + (1 + 7l) y = 0.

Thus l = 1, -1/9. For, l = 1, x = -2y, and substitution in x2 + 8xy + 7y2 = 225,               gives y2 = - 45, for which no real solution exists.

For l =  -1/9,  y = 2x, and substitution in x2 + 8xy + 7y2 = 225, gives  x2 = 5, y2 = 20 and so x2 + y2 = 25.

and cannot vanish because (dx, dy) ¹ (0,0).  Hence the function x2 + y2 has a minimum value 25.

Q.36    Express , as a single integral and then evaluate it.      (8)

                     Ans:

                  Let    and     

 

Let R1 and R2 be the regions over which I1 and I2 are being integrated respectively and are depicted by the shaded portion in fig. I. 

As it is clear from Fig.II, R = R1+ R2

                               Fig. I                                                                                 Fig. II

Thus, I = I1 + I2 =  .  For evaluating I we change the order of integration hence the elementary strip has to be taken parallel to x-axis from y = x to

dy    

Q.37    Obtain the volume bounded by the surface  and a quadrant of the elliptic cylinder , z > 0 and where a, b > 0                                                                        (8)

 

            Ans:

In solid geometry   represents a cylinder whose axis is along z-axis and guiding curve ellipse. Required volume is given by

    

Let us use elliptic polar co-ordinates x = a r cosθ, y = b r sinθ, where 0 ≤ r ≤ 1,

dx dy = ab r dr dθ, and , hence

 

.

 

Q.38    Solve the following differential equations:                                                                                   (8)

            (i)     

            (ii)   

 

                     Ans:

                    (i)The given equation can be written as

                   

                    It is linear in y, and here P =  - cos x and Q = sin x cos x. 

                    Then I.F. = . Hence the solution of (1) is

                    Y(I.F.) =  or 

                    Now, putting  –sin x  = t, we get 

                   

                    Therefore, the solution is y = - (1 + sin x) +

                                                               => y + 1 + sinx = cesinx

                    This is the required solution where c is an arbitrary constant.

                        (ii)       

                    The given equation is of the form M dx + N dy = 0 where

                       

                        Multiplying the given equation throughout by cos y, we get

                    which is exact.

                    Therefore, the solution is

                   

                    This is the required solution where c is an arbitrary constant.

 

Q.39    Solve the following differential equation by the method of variation of parameters.

                                                                                                                  (9)

 

            Ans:

First of all we find the solution of the equation .

This is a homogeneous equation. Putting x = ez  and , the equation reduces to

[D(D-1)+D-1] y = 0 , which gives D = 1, -1.

                  Therefore, ,

Therefore, ,

Writing the given equation in standard form, we get

      (1)

Let  y = Ax+ B/x  be a solution of equation (1), where A, B are functions of x. Then

, Choose A and B such that                     (2)

Therefore, ,

Substituting the values of y,  in equation(1), we get

                 (3)

Solving equations (2) and (3), we get

.

On integrating, we get

.

Thus, the complete solution is y = Ax + B/x  

i.e.

 

Q.40    Solve                                                                                            (7)

 

                 Ans:

The auxiliary equation is m2 – 4m + 1 = 0   which gives m = 2 ± Ö3.

Therefore, C.F. = y = .

 

               Further P.I. =

              

               Hence, the general solution of the given equation is

               y = .

 

Q.41    Show that non-trivial solutions of the boundary value problem

            ,   are y(x) = , where Dn are constants.                                                                                                                        (9)

 

            Ans:

Assume the solution to be of the form y = emx . The characteristic equation  is given as  m4 – ω4 = 0 or .

The general solution is given by

y(x) =

Substituting the initial conditions, we get   y(0) = A + C = 0.

;

.

Solving, the two equations, we get A = 0, C = 0. We also have

 Adding, we obtain 2B sinh ωl = 0 or B = 0. Therefore, we obtain

 D sin ωl = 0. Since we require non-trivial solutions, we have D ≠0.

 Hence, sin ωl = 0 = sin nπ, n = 1,2,3,…..

 Therefore, .

 The solution of the boundary value problem is

By superposition principle, the solution can be written as

.

 

Q.42    Show that the matrices A and AT have the same eigenvalues. Further if λ, μ are two distinct eigenvalues, then show that the eigenvector corresponding to λ for A is orthogonal to eigenvector corresponding to μ for AT.                                                                (7)

 

            Ans:

We have ,

                  Since A and AT have the same characteristic equation, they have the same eigenvalues.

                  Let λ and µ be two distinct eigenvalues of A. Let x be the eigenvector corresponding to the eigenvalue λ for A and y be the eigenvector corresponding to the eigenvalue µ for AT. We have Ax = λx. Premultiplying by yT , we get

                  =                                           (1)

and 

Post multiplying by x, we get                        (2)

Subtracting equation (1) and (2), we obtain

  Since λ ≠ μ, we obtain .

Therefore, the vectors x and y are mutually orthogonal.

 

Q.43    Let T be a linear transformation defined by

                                           

                                        

            Find                                                                                                                      (7)

 

            Ans:

                  The matrices , , ,  are linearly independent and hence form a basis in the space of 2X2 matrices. We write for any scalars  not all zero

                   

                  = .

                  Comparing the elements and solving the resulting system of equations, we get , , , . Since T is a linear transformation, we get

                 

 

Q.44    Find the eigen values  and eigenvectors of the matrix .                                (9)

            Ans:

The characteristic equation of A is

            Thus, the eigen values of A are 1=0,  2 = 3,  3 = 15. The eigenvector X1 of A corresponding to 1=0, is the solution of the system of equations

           

            Eliminating from the last two equations gives        . 

            Setting

                  Therefore, the  eigenvector of A corresponding to  =  0, is

            Similarly for  =  3, we get X2   is

            , we get X3 as .

            Further, since A is symmetric matrix, the eigen vectors   X1,  X2, X3 should be mutually orthogonal. Let us verify that

            X1 *  X2  = (1)(2) + (2)(1) + (2) (-2) = 0.

            X2 *  X3  = (2)(2) + (1)(-2) + (-2) (1) = 0.

            X3 *  X1  = (2)(1) + (-2)(2) + (1) (2) = 0.

Q.45    Solve the following system of equations:

                    

                    

                    

                                                                                                                               (6)

 

            Ans:

                  The given system in the matrix equation form is AX = B;  where

                 

                   ~

            (on operating R2  R2 - 3 R1 ,  R3  R3 - 2 R1 and  R4  R4 - R1 )

            ~  (on operating R2  R2 - R3 and   R3  R3 – 2 R4 )

            ~  (on operating R2  - R2  and   R4  R4 + 3 R2 )

            ~  (on operating   R4  R4 - 2 R3 )

Therefore, rank (A : B) = rank A = 3 = number of unknowns, hence unique solution. To obtain this unique solution, we have

(A : B) ~  (on operating R1 → R1 + R3  and   R1  R1 - 2 R2 )

Therefore, the unique solution is x = -1, y = 4, z = 4.

Q.46    Find the series solution about the origin of the differential equation

            .                                                                                                   (10)

 

            Ans:

            We find that x = 0 is a regular singular point of the equation. Therefore, Frobenius series solution can be obtained.

                  Let y(x) =  be solution about x = 0

                 

                 

         Then given differential equation becomes

        

         .

The lowest degree term is the term containing xr . Equating coefficient of xr to zero, we get

The  indicial roots are r = -2, -3. Setting the Coefficients of xr+1  to zero, we get

. For r= -2, a1 is zero and for r = -3, a1 is arbitrary. Therefore, the indicial root r = -3, gives the complete solution as the corresponding solution contains two arbitrary constants. The remaining terms are

.

 

Setting n-2 = t in the first sum and changing the dummy variable t to n, we get

.

Setting the coefficient of xn+r+2 to zero, we get

, n 0.

We have , ,……

For r = -3, we get ,……

The solution is given by

=

 

For  r = -2, we get

Therefore, the solution is

We find that the indicial root r = -2, product a linearly dependent solution.

 

Q.47    Express f(x) =  in terms of Legendre polynomials.                                (8)

 

            Ans:

                  We know that, various powers of x in terms of Legendre polynomials can be written as

                 

                 

                 

                  =

                  Therefore,

                  .

 

Q.48    Evaluate , where  denotes Bessel function of order n.                                (8)

 

            Ans:

                  Using the recurrence relation,

                 

                 

                 

                  Using the recurrence relation,

                 

                 

 

 

Q.49     Find the stationary value of  subject to the fulfilment of the condition , given a, b, c are not zero.                                   (7)

            

             Ans:

            Let u = a3x2 + b3y2 + c3z2

           

Let  where l is constant using Lagrange’s multiplier method.

For stationary values,

=>        ax = by = cz = k

Then,      gives    a + b + c = k

Therefore,       

Stationary value of u is

  .

Q.50                                                                      Find the volume enclosed by coordinate planes and portion of the plane  lying in the first quadrant.                                                                    (7)

 

             Ans:

The region of integration R is bounded by x = 0,  y = 0, and lx + my = 1

{projection of lx + my + nz = 1 on z = 0}

.

Q.51                                                                      If the directional derivative of  at (1, 1,1) has maximum magnitude 15 in the direction parallel to line  find the value of a, b, c.                                                                  (7)

            

             Ans:

           

This is along normal to the surface and is the  maximum directional derivative. Thus   is || to line .

Therefore,       

Therefore,   a = 4l,  b= -11l,  c = 10l   and  


Therefore,        .

 

Q.52                                                                      Verify divergence theorem for the vector field  taken over the region bounded by cylinder .  (7)

            

             Ans:

            By Divergence theorem,

           

Now,       

        

           

Let x = 2 sin then dx = 2cos, for x = 0,  = 0 and for x = 2,  =                      

             

Now Surface S consists of three surfaces, the one leaving base S1 (z = 0), second leaving top S2 (z = 3), third the curved surface S3 of cylinder x2 + y2 = 4 between z = 0, z = 3

On S3   the outer normal is in the  direction of . Therefore a unit vector along  normal to the curved surface is given by

 

, thus  

Hence divergence theorem proved.

Q.53           Show that  and hence deduce that .                                                                        (7)

             Ans:

            We know that

Putting, ,   Then

Comparing real and imaginary part

Let

.

Therefore,        .  Let b > 0, then

                       

Hence,

Putting b = 0,    we get  

 

Q.54           Solve  in the interval  subject to the boundary conditions :

                   (i)                                      (ii) 

                   (iii)                                      (iv)  .      (7)

            

             Ans:

            Let U = X(x) Y(y), then equation becomes

. 

 Let , then

Therefore,        X = A cos lx  +  B sin lx

                        Y = Cely + De-ly

U (x, y)  =  (A cos lx  +  B sin lx) (Cely + De-ly)

(iv) condition gives U (x, y) → 0 as y→ µ       =>         C = 0

\  U = (A cos lx + B sin lx) e-ly

(i) gives U (0, y) = 0    =>    A  =  0

Hence, U = B sin lx . e-ly

 (iii) gives  U (x, 0)  =  1       =>  1   =   bl  sin x

 

Q.55                                                                      Use Cayley - Hamilton theorem to express  in terms of A and the identity matrix I,  where .                                                                        (7)

             Ans:

            The characteristic equation of A is |A-lI| = 0

=>        l2   – 4l – 5 = 0

=>        A2 – 4A – 5I = 0,  by Cayley Hamilton Theorem.

Thus A5 – 4A4 – 7A3 + 11A2 – A – 10I

= (A2 – 4A – 5I) (A3 – 2A + 3I) + A + 5I   = A + 5I.

            

Q.56           Solve .                                             (7)

            

             Ans:

            (D2 + 5D + 6) y  =  e-2x sec2x (1 + 2 tan x)

A.E. :   m2 + 5m + 6 = 0

m = -2 , -3

C.F.  = c1e-2x + c2e-3x

Thus y  =  c1e-2x + c2 e-3x + e-2x tan x.

Q.57           Find analytic function whose real part is .                                (7)

            

             Ans:

            Let  and f(z) = u + iv

           

               since u is an analytic function, thus it must

            satisfies C-R equations, thus

           

Using Milne’s Thomson method, Let x = z , y = 0

 , where c is a constant of integration.

         

Q.58           Evaluate , using contour integration.                                  (7)

 

             Ans:

            Consider the function . It has simple pole at z = 0.  where C consists of the part of real axis from –R to -r and from r to R, the small semi circle Cr from –r to r with center at origin and radius r, which is small and large semi-circle CR from R to –R as shown in Fig. f (z) is analytic inside C (z = 0, the only singularity has been deleted by indenting the origin by drawing Cr).

Therefore, by Cauchy’s Theorem,

For CR, we have z = Reiq , 0 £ q £ p and  Cr ,  z = reiq , 0 £ q £ p

Since  decreases from 1 to  as q increases from 0 to           

Putting values in (1) and applying limits r→0, R→¥, we get


Q.59                                                                      In a normal distribution 31% of the items are under 45 and 8% are over 64.  Find the mean and standard deviation of the distribution.

                   [Given that ,                                                

                   where is pdf of standard normal distribution.]                                    (7)

            

             Ans:

            Since 31% of items are under 45. Hence 19% of items lies between  and 45. Since ,

thus,   .Similarly

Solving, we get s = 10, .

 

Q.60                                                                      A can hit a target 3 times in 5 shots, B  2 times in 5 shots and C  3 times in 4 shots. All of them fire one shot each simultaneously at the target. What is the probability that (i) two shots  hit (ii)  atleast two shots hit?                                                                           (7)

            

             Ans:

            p(A) = Probability of hitting target by A = 3/5

            p(B) = Probability of hitting target by B = 2/5

            p(C) = Probability of hitting target by C = 3/4

(i)         p1         = Chance A, B hit & C fails

=

p2         = Chance B, C hit & A fails = 12/100

p3         = Chance C, A hit & B fails = 27/100

Since all these events are mutually exclusive, therefore,

P(two shots hit the target) = p1 + p2 + p3 = 0.45

(ii)        In case atleast two shots may hit target, we must also consider case when all hit the target.

p4         = Probability A, B, C hit target = 18/100.

Therefore, P(atleast  two shot hit the target) = p1 + p2 + p3 + p4 = 63/100 = 0.63.

 

Q.61           Diagonalize the matrix .                                                                     (7)

             Ans:

            The characteristic equation is |A – lI| = 0

            i.e. l3 - 7l2 + 36 = 0

=> l = -2 , 3, 6

These are eigen values of given matrix A. For eigen vectors we find X ≠ 0, such that   (A - lI) X = 0

For  l = -2

3x + y + 3z = 0

x + 7y + z = 0

Therefore,        for l = -2, eigen vector is (-1, 0, 1)

Similarly           for l = 3, eigen vector is (1, -1, 1)

                        for l = 6, eigen vector is (1, 2, 1)

The modal matrix P is given by

The diagonal matrix D is given by

 

Q.62        Investigate the values of  and  so that equations

                                                                       

                                                                      have (i) no solution (ii)  a unique solution (iii)  infinite number of solutions.                                                   (7)

                                                                

 

Ans:

            We have

i.e. AX = B

(i)         (A : B) =

R3→R3 – R1,    R2→7R1 – 2R2

If l = 5, system will have no solution for those values of m, for which rank A ¹ rank (A : B). If  l = 5, m ¹ 9, then rank (A) = 2 and rank (A : B) = 3. Hence no solution

            (ii)        The system admits unique solution iff coefficient matrix is of rank 3

\  

Thus for unique solution l ¹ 5 and m may have any value.

(iii)       If l = 5,m = 9, system of equation have infinitely many solution

 

Q.63                                                                      The height h and semi vertical angle  of a cone are measured and the total area A of surface of cone including that of base is calculated in terms of h, . If h and  are in error by small quantities  and  respectively, find the corresponding error in the area.  Show further that if an error of +1% in h will be approximately compensated by an error of –0.33 degrees in .                                                                                 (7)

            

             Ans:

Let r be base radius and l be slant height of cone.

Total area A = area of base + area of curved surface

                = pr2 + prl = pr (r + l)  =  ph2 tan a (tan a + sec a)

dA = 2ph (tan2 a + tana seca) dh + ph2 (2tana sec2a + sec3a + tan2a seca) da

The error in h will be compensated by error in a, when

dA = 0     

 radians = -0.33o    .

 

Q.64           If what values of n will make                 (7)          

            

             Ans:

                             -           (A)

Differentiating (A) partially w.r.t. t, we get

Differentiating (A) partially w.r.t. r, we get

equating (1) and (2), we get      n = -3/2.

 

Q.65                                                                      A vector field is given by .  Show that the field is irrotational and find its scalar potential.  Hence evaluate line integralfrom (1, 2) to (2, 1).                                                                  (7)

            

             Ans:

            Curl

           

=         

\ vector field  is irrotational then $ a scalar function j s.t.

Integrating, we get

Because, field is irrotational

           

 

Q.66       Solve .                                                                      (7)

            

             Ans:

           

Therefore, solution is

=>        t = 1 + cx

=>        (log z)-1 = 1 + cx   or   .

 

Q.67           Express  in terms of  and .                                                   (7)

            

             Ans:

            We know

For n = 1, 2 , 3

 

Q.68           Find Taylor’s expansion of  about the point z = i.           (7)

                    

            Ans:

           

We have to expand about z = i

Q.69           Examine the following system of equations for consistency :

                                                

                                                                              Reduce the augmented matrix of the above system of equations to Echelon form and find the solution of the above system, if it exists.                            (7)

           

Ans:

            The system of equations can be written as AX = B

where

Augmented matrix = [A : B]

[A : B] =         

[A : B]             

[A : B]             

This is row Echelon Form of A. Since the number of non-zero rows in the row-echelon form is 3. So,

Hence system of equations has unique solution, and is given by solving

Q.70           Find the eigen values and the corresponding eigen vectors of the matrix A defined by                     

                                         

                                                                              Obtain the modal matrix and reduce the given matrix to the diagonal matrix.                                                                                                                     (7)

           

Ans:

            Characteristic equation is | A – lI | = 0

Eigen values of matrix A are 1, 1, 5

For l = 5, eigen vector is obtained by solving the  system of equations

 

i.e.        –3x + 2y + z = 0

x – 2y + z = 0

x + 2y –3z = 0

Solving, we get

i.e. eigen vector is (1, 1, 1)

For l = 1, eigen vector is obtained by solving the  system of equations

i.e.        x + 2y + z = 0

There are two linearly independent eigen vectors for l = 1 . These are obtained by putting x=0 and y =0 respectively in the equation.

For x = 0,         2y + z = 0

Eigen vector is (0, -1, 2)

For y = 0, Eigen vector is (-1, 0, 1)

\         Modal Matrix    =     P     =   

\         Diagonal Matrix    =    D     =    P-1AP

Q.71     If  and  is an analytic function of , find f(z) subject to the condition that at .              (7)

           

Ans:

           

Then

       

By C.R. equations,

Subtracting (2) from (1)

Adding (1) and (2)

Using Milne’s Thomson method, putting x = z,   y = 0 in (3) and (4), we get

Q.72                                                                      Prove that the relation  transforms the real axis in the  z-plane into a circle in the w-plane.  Find the centre and the radius of the circle and the point in the z-plane which is mapped on the centre of the circle.                                                                           (7)

           

Ans:

            Since,  

Thus image of real axis in the z plane (means y = 0) is given by

4(u2+v2) + 7v – 2 = 0

i.e. 

which is an equation of circle with centre at  and radius

For u = 0, v = , we get x = 0, y = . Thus centre of circle in w plane is image of point  in z plane.

Q.73     Solve in series the differential equation :

                                                                                              (8)

           

Ans:

            x = 0 is a regular singular point.

Let

Substituting in  the given differential equation

The lowest power of x is xr-1. Its coefficient equated to zero gives C0r(r+3) = 0. Because C0 ¹ 0

=> r = 0,          r = –3

The coefficient of xm+r is equated to zero gives

When r = 0

, for r =  0. Thus one solution is

When r = -3,               C1 = -5C0 ,      C2 = 10C0 ,      C3 =  -10C0 ,   C4 = 5C0 ------Thus is another solution.

 is general solution.

Q.74           Prove that

                  

                                    where c is an arbitrary constant.                                                            (6)

           

Ans:

           

Q.75                                                                      Show that the vector field represented by

                                                                              is irrotational but not solenoidal.  Also obtain a scalar  function such that grad =.                                                                                           (5)

            Ans:

           

except for x = -2.

Therefore, given vector field is not solenoidal.

=     0

\ Given vector field  is irrotational. Thus it can be expressed as , where f is scalar function.

      ,,

Integrating w.r.t. x, y, z we get

Since these three must be equal

+c

Q.76                                                                      If  and , show that .  Also show that  is a possible solution of  where A and B are arbitrary constants.                                                                                                                  (5)

            Ans:

           

 

We know that  

Q.77                                                                      Evaluate  where  and s is the surface of the cylinder  included in the first octant between    z = 0 and z = 5.                 (4)

           

Ans:

           

Q.78     If , then show that .         (7)

            Ans:

            Given  

Adding & subtracting respectively, we get

Let      

Similarly

Similarly

Adding, we get

Q.79                                                                      The Luminosity L of a star is connected with its mass M by the relation  where   and  a, b being given constants.  If p is the percentage error made in the estimate of M, express the resulting percentage error in the calculated luminosity in terms of p and  and show that it lies between p and 3p.                                         (7)

            Ans:

            L  =  aM (1 – b)          ,           1 – b  =  bb4M2

Eliminating  from (1) and (2), we get

is the required expression of percent change in L. Since 0 < β < 1, we have

Q.80     Solve the following differential equations :

                   (i)  .                                                                        (5)

                   (ii)   .                                                                        (5)

            Ans:

 (i)       

Let      

I.F.      

(ii)       

Integrating,

Q.81           Change the order of integration in the following integral :

                                                                                                     (4)

             Ans:

           

             This integration is first w.r.t. y and then w.r.t. x. On changing the order of integration, we first integrate w.r.t. x and then w.r.t. y. This divided into three regions.

Region I:           The strip extends from parabola y2 = 2ax i.e.  to x = 2a.

Then y = a to y = 2a

Region II:         The strip extends from  to circle .

Then y = 0 to a

Region III:        The strip extends from circle,  to x = 2a

                        Then y = 0 to y = a

Q.82    A string is stretched and fastened to two points at distance l apart.  Motion is ensued by displacing the string into the form  from which it is released at time t = 0.  Find the displacement at any point x and any time t.                                                 (5)

           

 

Ans:

            The vibration of the string is given by

                                                                          -           (i)

As the end points of the strings are fixed, for all time

y (0, t)   =    0   =    y (L, t)                                                       -           (ii)

Since initial transverse velocity at any point of the string is zero.

                                                                             -           (iii)

Also,                                                         -           (iv)

Using method of separation of variables and since the vibration of the string is periodic, therefore, the solution of (i) is of the form

           -           (v)

By (ii), 

This should be true if c1 = 0

Hence                     -           (vi)

By (iii) 

If c2 = 0, then (vi) will be y (x, t) = 0

\ C4 = 0

Thus (vi) becomes  

Hence (vi) reduces to

From (iv)         

\ Solution is

Q.83                                                                      The ends A and B of an insulated rod of length , have their temperatures at  and until steady state conditions prevail.  The temperatures of these ends are changed suddenly to  and respectively.  Find the temperature distribution in the rod at any time t.    (9)                                                          

           

Ans:

            Let the equation for conduction of heat be

Prior to temperature change at end B, when t = 0, the heat flow was independent of time (steady state condition), when u depends only on x i.e.

Since u = 20 for x = 0 and u = 80 for x = L

\ b = 20         ,           a =

Thus initial condition is expressed as

The boundary conditions are

The temperature function u (x, t) can be written as

where us(x) is a solution of (i) involving x only and satisfying boundary conditions (iii), which is steady state solution, ut (x, t) is a transient part of the solution which decreases with increase of t.

Since,   us(0) = 40 ,       us(L) = 60     \ using (ii), we get

From (iv), we get

General solution of (i) is given as

       

where  

Q.84           Represent the function  in Laurent’s series

                   (i)    within

                   (ii)   in the annular region within and

                   (iii)  Exterior to .                                                                                      (8)

 

            Ans:

           

           

           

           

           

Q.85    Apply the calculus of residue to evaluate .          (6)

            Ans:

           

Let

                             

             The pole of ¦(z) enclosed by contour C, which consists of semicircle CR and real axis segment from –R to R taken in counter clockwise directions, are z = i, z = 3i each of order 1.

Residue at

Residue at

Let R → ¥

, since second integral on the left hand side tends to 0.

Q.86                                                                      Show that the stationary values of , where  and  are the roots of the equation .                                                                      (7)

           

Ans:

            Let

Let              Using Lagrange’s method of multiplier, for extreme values, , f = g = 0.

Multiplying (1), (2), (3) by x, y, z  respectively  and adding, we get

Substituting in (4), we get

 

 is satisfied by stationary points.

Q.87                                                                      Expand  in powers of  and  upto 3rd degree terms.                                                                                                                                          (7)

             Ans:

           

Q.88                A man takes a step forward with probability 0.4 and backward with probability 0.6.  Find the probability that at the end of 11 steps, he is just one step away from the starting point.                                                                                                                                                (7)

            Ans:

            Let us call a forward step “a success” and a backward step “a failure”. 

Let X = no. of forward steps. Then X has binomial distribution with n = 11 and probability of success  p = 0.4.

 Required probability =P(X=6)+P(X=5)

Q.89                In a certain factory turning out razor blades, there is a small chance of  for any blade to be defective.  The blades are supplied in packets of 10.  Using Poisson’s distribution calculate the approximate number of packets containing

                   (i)    no defective blade (ii)   one defective blade (iii)  two defectives blades

                  

                   in a consignment of 10,000 packets                         .            (7)

           

Ans:   

            ,        n = 10

\ m = np = 0.02,     e-0.2 = 0.9802

(i)                  Probability of no defective blade = P (X=0)

= e–m = 0.9802   (approximately)

\ Mean number  of packets containing no defective blade is

= 10000 x 0.9802 = 9802

(ii)                The mean number of packets containing one defective blade

= 10000 x me–m = 196

(iii)               The mean number of packets containing two defective blades

            = 10000 x

                        = 2

Q.90                                                                      Show that at the point on the surface  where x = y = z, we have .                                                                                  (7)

             Ans:

It is given that xxyyzz=c, taking log we get

x log x+ y log y +z log z=log c

Differentiating the above equation w.r.t. y respectively, we get

,  now differentiating w.r.t. x we get

At the point x=y=z, we get  

 

Q.91           Find the volume of greatest rectangular parallelopiped that can be inscribed inside the ellipsoid  .                                                                                          (7)

             Ans:

Let edges of  parallelopipid be 2x, 2y, 2z parallel to the coordinate axes. The volume V is given by V = 8xyz.

            Let 

            Using Lagrange’s multiplier method, for maxima and minima, let

            F = V +  λ, where λ is a constant. For stationary values,

,  = 0

Q.92           Change the order of integration and hence evaluate .                   (7)

             Ans:

On changing order of integration, the elementary strip has to be taken parallel to x

                                       

axis for which the region of integration has to be divided into two regions R1and R2. The region R1: 0 ≤ x ≤ y,   0 ≤ y ≤ 1 and the region R2: 0 ≤ x ≤ 2-y,   1 ≤ y ≤ 2.

              = 2log2-1.

 

Q.93           Find the volume common to cylinders  and .           (7)

                  

             Ans:

The volume V is given as

            

 

Q.94           Solve the differential equations

 

             (i)   .                                                         (8)

             (ii)  .                                                                                         (6)

            

             Ans:

(i)The auxiliary equation is m2 - 4m + 4 = 0, which gives m = - 2, -2.

            Thus C.F. is given as (C1 + C2 x) e-2x.

                

           

            , since 2 is a root of order 2.

           

            Therefore, general solution is

            .

             (ii)Let Y = y + k, X = x + h,

where h, k are so chosen so that

-7h+3k+7=0

-3h+7k+3=0

Solving, we get h = 1, k = 0. Let Y = VX,

Integrating, we get

 

Q.95           Discuss the consistency of the following system of equations for various values of  

                                                                                                (7)

                   and, if consistent solve it.

                 

             Ans:

The augmented matrix is given as

            (A : B) =

Applying R3 àR3 – 2R1,                      

           

If l ¹ 7, rank (A:B) = 3 ¹ rank A = 2. Hence system is inconsistent.

If l = 7, rank (A:B) = 2 = rank A . Hence system is consistent. The solution is obtained as follows :

Set  x3 = t1, x4 = t2, t1, t2, arbitrary,  then

x2 = 4t1- t2+ 1,    x1 = 3t1+ t2+ 3.

Q.96                                                                      Find the characteristic equation of the matrix  and hence, find the matrix represented by              (7)

                 

                 

                  Ans:

The characteristic equation of A is |A-lI| = 0

ð                 l3 - 5l2 + 7l – 3 = 0, is the characteristic equation.

By Cayley Hamilton theorem, A must satisfy this equation i.e.

A3 – 5A2 + 7A – 3I = 0

Thus A8 – 5A7 +7A6 -3A5 +A4 – 5A3 + 8A2 – 2A +I

= (A5 +A) (A3 –5 A2 + 7A - 3I) + A2 +A + I   = A2  + A + I

= 

Q.97                                                                      Show that the vector field  is irrotational as well as solenoidal.  Find the scalar potential.                                                                                          (6)

            

            

             Ans:

              

            vector is solenoidal.

           

           

Therefore is irrotational.  Thus , where  is a scalar function.


Q.98                                                                      Evaluate  where  and S is the region of the plane 2x + 2y + z = 6 in the first octant.                                                               (8)

 

            

 

             Ans:

Unit normal to the plane 2x + 2y + z = 6 is along the vector , is given as   .

            Thus projection of given plane z=6-2x-2y on z=0 is region bounded by x=0, y=0,

             y=3-x.

           

           

           

 

Q.99                                                                      The odds that a Ph.D. thesis will be favourably reviewed by three independent examiners are 5 to 2, 4 to 3 and 3 to 4.  What is the probability that a majority approve the thesis?                                                                                                                                               (7)

             Ans:

Let p1 , p2 , p3 be the probabilities that thesis is approved by examiner A,B,C

p1 =  5/7,  p2 = 4/7, p3 = 3/7.  A majority approves thesis if  atleast two examiners are favorable.

P = p1p2q3 + p1p3q2 + p2p3q1+ p1p2p3

    = =209/343.

                  

Q.100                                                                    If the probabilities of committing an error of magnitude x is given by  compute the probable error from the following data :

                                                                               .                                           (7)

              

             Ans:

            =0.0126,

We know that probable error is given as (2/3)=0.0084.

Q.101   Solve by method of separation of variables .                           (5)

             Ans:

Let Z=X(x)Y(y), then given differential equation becomes

            X’’Y-2XY+XY=0,  where X’’,Y, X,Y’’ are first and second order derivatives.

           

                                                                                 

 

Q.102   Solve for conduction of heat along a rod without radiation subject to

      (i)   u is not infinite for               (ii)   for x = 0, x =

     (iii)   for t = 0 between x = 0 and x = .                                          (9) 

                                                                                                                                   

             Ans:

Let U=X(x)T(t), then given differential equation becomes

           

            . Condition (i) is satisfied.

If k2 =0, X=ax+b, T=c, thus by condition (ii), we get a=0

Thus U = bc.

Now U= (A cos kx  +  B sin kx) C

By (ii) condition, we get B=0, kl=nπ. Thus

C  is solution for all n.

Since x-x2  =

Q.103         Obtain the series solution of equation .          (8)

             Ans:

Since x = 0 is a regular singular point

Let

Now the given differential equation becomes

The terms with lowest power of x is xr-1. Its coefficient equated to zero gives C0r(r-2) = 0. Because C0 ¹ 0

=> r = 0,          r = 2

The coefficient of xm+r is equated to zero gives

,………

 

Q.104   Express  in terms of  and .                                                           (6)          

 

             Ans:

We know

           

For n = 1, 2 , 3

Q.105   Express as =  where .    (7)

             Ans:

            If f(x) =∑cnPn(x), then

           

            where we have used the fact that

           

Q.106  Find analytic function whose real part is .                                       (7)

            

 

             Ans:

Let , and f(z) = u + iv

           

               since u is an analytic function, thus it must satisfies       

            C-R equations, thus

Using Milne’s Thomson method, Let x = z , y = 0

\  where c is an arbitrary constant.

Q.107   Show that under the transformation , real axis in the z-plane is mapped into the circle  Which portion of the z plane corresponds to the interior of the circle?                                                                                                                                        (7)

             Ans:

            For the real axis in the z plane y=0, i.e.=1, Also <1 implies  y>0. hence the result.

 

Q.108   Let  where C is ellipse .  Find value of F(3.5) and .                                                                                                         (7)

            

 

 

 

             Ans:

, since 3.5 is a point which lies outside C, thus F(3.5) = 0 by Cauchy theorem.

Also -1 lies within C, by Cauchy Integral Formula

             .

 

Q.109   Compute  and   for the function

                                                                                         (6)

             Ans:

       

Q.110   Let v be a function of (x, y) and x, y are functions of  defined by                          

                  

                  

                   where   Show that .                                                (8)

             Ans:

Because x + y = 2eqcosj,                     x – y = 2ieqsinj

Adding & Subtracting, we get

2x = 2eq (cosj + isinj)            =          2eq + ij

=>                    x          =          eq + ij

Similarly           y          =          eq - ij

Let       v = f (x, y),       x = g (q, j),     y = h (q, j)

                             

 

Q.111   Expand  near (1, 1) upto 3rd degree terms by Taylor’s series.                              (7)

 

             Ans:

f(x, y)   = xy                              ,           f(1, 1)   =  1

fx (x, y) = yxy-1              ,           fx(1, 1) =  1

fy (x, y) = xylog x                      ,           fy(1, 1) =  0

 (x, y) = y (y-1) xy-2 ,           (1, 1) =  0

(x, y) = xy (log x)2               ,           (1, 1) =  0

fxy (x, y) = xy-1 + yxy-1 log x       ,           fxy (1, 1) =  1

(x, y) = y (y-1) (y-2) xy-3     ,           (1, 1) =  0

 (x, y) = (2y-1)xy-2 + y (y-1) xy-2 log x        ,           (1, 1) =  1

 (x, y) = yxy-1 (log x)2 + 2 log x xy-1 ,           (1, 1) =  0

By Taylor’s Theorem

            

 

Q.112   Find the extreme value of   subject to the conditions and .                                                                                                     (7)

            

             Ans:

Let       f = x2 + y2 + z2 + xy + xz + zy

                        g = x + y + z – 1           = 0

                        h = x + 2y + 3z – 3       = 0

            Let l1, l2 be two constants. Using Lagrange’s multiplier method, we get

F          =          f + l1g + l2h     OR

F          =          x2 + y2 + z2 + xy + xz + zy + l1(x + y + z – 1) + l2(x + 2y + 3z – 3)

For extreme values,

,          x + y + z = 1,    x + 2y + 3z = 3.

=>        2x + y + z + l1 + l2     =    0    =>        x + l1 + l2 + 1  =  0

            2y + x + z + l1 + 2l2   =    0                            y + l1 + 2l2 + 1  =  0               (A)

            2z + x + y + l1 + 3l2   =    0                            z + l1 + 3l2 + 1  =  0

Adding (A) and using x + y + z = 1, we get

            3l1 + 6l2 + 4   =  0

Multiplying equation (ii) of ‘A’ by 2 and (iii) by 3 and adding all and using

x +2 y +3 z = 1, we get    6l1 + 14l2 + 9  =  0

Solving,     3l1 + 6l2 + 4          =  0

6l1 + 14l2 + 9  =  0,    we get

l1   = –1 /3,                  l2  = –1 /2

From (A), we get

x = –1/6,          y = 1/3,            z = 5/6

Therefore,        (–1/6, 1/3, 5/6) is a point of extremum, with extreme value

             F(–1/6, 1/3, 5/6)= (-1/6)2 + (1/3)2 + (5/6)2 – 1/6*1/3 – 1/6 * 5/6 + 1/3 * 5/6 =11/12

                  

Q.113   Find the rank of the matrix

 

                                                                                                               (6)

            

             Ans:

Applying           R1 R3,          R2 R4

R3        R4

R3 àR3 – 3R1,             R4 à R4 – 9R1

R4 àR4 – R2,               R3 à R2 – 2R3

R4 à    9R3 + 5R4

Thus |A| 0     Hence, rank of A = 4.

 

Q.114   Let                           

                       

                be a linear transformation from  to  and

                                                                             

 

                                                                                                                

                            

             be a linear transformation from  to .

             Find the linear transformation from  to  by inverting appropriate matrix and matrix multiplication.                                                                                                          (8)

                                                                             

             Ans:

Let

           

y1         =          1.25 z1 + 3 z2 – 2.3 z3

y2         =          0.75 z1 + 2 z2 – 2.3 z3

y3         =          0.5 z1 - z2 + z3

 

Q.115   Prove that the eigenvalues of a real matrix are real or complex conjugates in pairs and further if the matrix is orthogonal, then eigenvalues have absolute value 1.                                                   (6) 

                                                                                                                                                                                          

             Ans:

Let A be a square matrix of order n.

Then |A – lI | = (-1)nln + k1ln-2 + -----  + kn = 0

 where k’s are expressible in terms of elements aij of matrix A. The roots of this equation are eigen values of matrix A. Since this is nth polynomial in l which has n distinct roots which are either real or complex conjugates.

            Hence, eigen values of matrix are either real or complex conjugates.

If l is an eigen value of orthogonal matrix then 1/l is an eigen value of A-1. Because A is an orthogonal matrix. Therefore A-1 is same as A.

Therefore 1/l is eigen value of A. But A and A have same eigen values.

             Hence, 1/l is also an eigen value of A. The product of eigen value of orthogonal matrix = 1 and hence if the order of A is odd it must have 1 as eigen value. Since product of eigen value of matrix A is equal to its determinant. Therefore |A| = ±1.

Q.116   Find eigenvalues and eigenvectors of the matrix .                    (8)

             Ans:

|A – lI | = 0

           

            =>        l3 + l2 – 21l - 45       =   0

            =>        l = 5, -3, - 3

            Eigen values are 5, -3, -3

For l = 5, eigen vectors are obtained from

=>        -7x + 2y - 3z = 0

            2x – 4y – 6z = 0

            -x –2y – 5z = 0

Solving we get,   

i.e. (1, 2, -1) is an eigen vector

For l = -3, eigen vectors are obtained from

            i.e. x +2y – 3z = 0

There are two linearly independent eigen vectors for  l = -3. These are obtained by  putting x = 0 and y = 0 respectively in the equation.

 Let x = 0 then 2y – 3z = 0

i.e.  is an eigen vector

Let y = 0, then x – 3z = 0

      is an eigen vector.

Eigen vectors corresponding to 5, -3 , -3 are

[1, 2, -1] , [0, 3, 2] and [3, 0, 1]’.

Q.117   Find a matrix X such that  is a diagonal matrix, where .  Hence compute .                                                                      (8)

            

             Ans:

A =

| A - lI |     =    0

=> l2 - 7l + 6 = 0

=>  l = 1, 6

For l = 1,

           

            Therefore, x + y = 0

            Eigen vector is (1, -1)

For l = 6,

           

            Therefore, x - 4y = 0

            Eigen vector is (4, 1)

Therefore, modal matrix is X = and

X-1 =

D = X-1AX =  which is diagonal matrix

Also A = XDX-1

A50 = XD50X-1

 X-1

            

Q.118   Prove that a general solution of the system

                  

                   can be written as

                   ++ where  are arbitrary.                                                            (6)

            

             Ans:

The system of equation can be written as AX = B

           

Rank(A) = Rank(A,B) = 3. Thus system is consistent. Homogeneous system AX=0, has 5 – 3 = 2 linearly independent solutions. Clearly  (, -1, 3, 1, 0),  (, 1, -2, 0, 1) are linearly independent and satisfy the homogeneous system AX = 0. Also (, 2, 0, 0, 0) is a particular solution of non-homogeneous system AX = B.  Thus general solution of non homogeneous system is (x1, x2, x3, x4, x5) = (, 2, 0, 0, 0) + a (, -1, 3, 1, 0) + b (, 1, -2, 0, 1),  where a, b are arbitrary.

 

Q.119   Let  Recognise the region R of integration on the r.h.s. and then evaluate the integral on the right in the order indicated.                             (7)

            

             Ans:

For I1, region of integration is bonded by the lines  x = 1, x = 2, y=0 y = 1         i.e. region R1 in figure. For I2, region of integration is bonded by the lines x = y, x = 2, y = 1, y = 2 i.e. region R2 in figure.

             

Now the region R of integration i.e. union of R1 and R2 is bonded by the lines y = 0, y = x, x = 1, x = 2

  

      .

 

Q.120   Compute the volume of the solid bounded by the surfaces  and .                                                                      (7)

            

             Ans:

Let V be the volume of solid. The two surfaces intersect at z  = 1. Therefore

Let .  Then dydx = rdrdθ, r varies from 0 to  and θ varies from 0 to 2π. Then

Q.121   Let  be an integrating factor for differential equation Mdx+Ndy=0 and  is a solution of this equation, then show that  is also an integrating factor of this equation, G being a non-zero differentiable function of .                                          (6)

            

             Ans:

Since m be an integrating factor for differential equation Mdx + Ndy = 0. Thus m(Mdx + Ndy) = 0 is an exact differential equation.

            Also     dj = m (Mdx + Ndy)   (given)

            Because, j = constant,  is a solution.

            Let G(j) be any function of j

Therefore G(j)dj = m G(j) (Mdx + Ndy).

Let

Since terms on left is an exact differential, the terms on right must be an exact differential. Therefore, m G(j) is an integrating factor of differential equation.

            

Q.122   Solve the initial value problem .                        (8)

             Ans:

 is the differential equation.

I.F.    =  ex  . Hence solution is

    =>    ex (y ln x + 1) + cy = 0

     

Q.123         Find general solution of differential equation .                              (7)

             Ans:

y + y   =  sec x

can be written as (D2 + D) y  = sec x

i.e. D (D + 1) y  = sec x

Therefore, auxiliary equation is m2 + m = 0

m = 0 , -1

C.F.     =          C1 + C2e-x

             Therefore,

 

Q.124   Solve the boundary value problem                                                                               

                   .                                              (7)

            

             Ans:

The given differential equation is x2y – xy + y  =

i.e. (q(q-1) - q + 1) y =        ,   

C.F. =  x (C1 + C2 log x)

Therefore,        y = x (C1 + C2 log x) +

            

Q.125   Solve the differential equation .                                             (5)

 

             Ans:

            yiv + 32y + 256y = 0

            i.e. (D4 + 32D2 +256) y = 0

A.E. is m4 + 32m2 + 256 = 0

i.e. (m2 + 16)2 = 0

=>        m = ± 4i, ± 4i

Therefore, y = (C1 + C2 x) (C3  cos 4x + C4 sin 4x)

 

Q.126   Using power series method find a fifth degree polynomial approximation to the solution of initial value problem

                                                                        .            (9)

                                                                

                                                                 Ans:

Let x = 0 be an ordinary point

Let  be solution about x = 0

Then given differential equation becomes

equating coefficient of xn to zero, we get

Also     y(0)  =  2          =>        a0  =  2

            y'(0)  =  -1       =>        a1  =  -1

Therefore,        a0  =  2,  a1  =  -1,  a2  =  1,  a3  =  0,   a4  = ¼ ,  a5  = 3/20 , ______­­­­_

+…..

 

Q.127   Let  denote the Bessel’s function of first kind.  Find the generating function of the sequence . Hence prove that

                                                                          (7)

            

             Ans:

Jn(x) is the coefficient of zn in expansion of.

Coefficient of zn  , n ≥ 0

Similarly we can get the result for n < 0. Set z = i . Then

Comparing real and imaginary parts and by using  we get

cos (x)  = J0 (x) - 2 J2 (x) + 2 J4 (x) +……….

sin (x)   = 2[ J1 (x) + J3 (x)+ J5 (x)+ ---------]

 

Q.128   Show that for Legendre polynomials

                                                                  (7)

            

             Ans:

We know that (2n-1) x Pn-1 = n Pn + (n-1) Pn-2

Multiplying by Pn(x) both sides and integrating, we get

            

 

Q.129              For the  function         show that 

                         .                                                                                                               (8)

Ans:

            For obtainingandwe need  and . For obtaining these derivatives we use the definition of and

             ,  

Thus

           

 

Q.130  Find  the  absolute  maximum  and    minimum   values  of   the     function

 over the rectangle in the  first   quadrant bounded by the lines x = 2, y = 3 and the coordinate axes.                                                                                                                                  

                                                                                                                                 (8)

Ans

            The function f can attain maximum/ minimum values at the critical points or on the boundary of the rectangle OABC, such that O (0,0), A(2,0), B(2,3), C (0,3). We have . The critical point is (x,y)=(1,2/3). Now, since and  r >0. The point (1,2/3) is a point of relative minimum. The minimum value is f(1,2/3)=-4.On the boundary line OA, we have y = 0 and f(x,y) = f(x,0) = g(x) = , which is a function of one variable. Setting we get x = 1. Now, . Therefore, at x =1, the function has a minimum. The minimum value is g(1)=0. Also, at the corners (0,0), (2,0) we have f(0,0)=g(0)= 4, f(2,0)=4. On the boundary line AB, we have x = 2 and f(x,y) = h(y) = , which is a function of one variable. Setting we get y =2/3. Now, . Therefore, at y=2/3, the function has a minimum. The minimum value is f(2,2/3)=0. Also, at the corners (2,3) we have f(2,3)=49. On the boundary line BC, we have y = 3 and f(x,y) = g(x) = , which is a function of one variable. Setting we get x =1. Now, . Therefore, at x=1, the function has a minimum. The minimum value is f(1,3)=45. Also, at the corners (0,3) we have f(0,3)=49.On the boundary line CO, we have x = 0 and f(x,y) = h(y) = , which is the same case as for x=2.Therefore, the absolute minimum value is -4 at (1,2/3) and the absolute maximum value is 49 at (2,3) and (0,3).

 

Q.131    If , find an approximate value of f(1.1,0.8) using the Taylor’s series quadratic approximation.                                                                                                 (8)

 

Ans:

Using the Taylor series quadratic approximation, one can write

             ------------------- (1)

            Here h=0.1, k= -0.2 Thus

             ----- (2)

            Now

, . Thus

= -(0.05); ;

. On using the values of ,

 in Eqn (2), we get

.

Q.132  Evaluate the integral  by changing to polar coordinates, where R is the region in the x-y plane bounded by the circles     and =9.  (8)

 

Ans:

            Using x = r cosθ, y = r sinθ, we get dx dy = r dr dθ, and

 

Q.133  Find the solution of the differential equation  (y-x+1)dy – (y+x+2) dx = 0.                       (6)

 

 

 

Ans:

When written in the form ; the differential equation (d.e.) belongs to the category of reducible homogeneous d.e. of first order and can be integrated by reducing to the homogeneous form. Before we indulge into this let us first examine the given differential equation by writing it in the form M(x, y)dx + N(x. y)dy = 0

            Here M = -(y + x +2); N = y – x + 1

            ;             ,  Since

            Therefore the given equation is exact, consequently, we write it as follows

            ydy – xdy + dy – ydx – xdx – 2dx = 0

            or ydy  + dy – (xdy + ydx) – xdx – 2dx = 0

            Integrating

            In fact, on observation for its exactness should have been made before classifying it to any other category. If one fails to make this observation then it can be reduced to homogenous form y making the transformation x = X + h, y = Y + k which yields

Choose h, k such that h + k + 2 = 0, k – h + 1 = 0. Thus, we get h = , k =  and the d.e. reduces to  YdY – XdY – YdX – XdX = 0

Integrating ; .

 

Q.134  Solve the differential equation .    (6)

Ans:

On dividing throughout by cot3x, the given differential equation can be written as

                      -------- (1)

Eqn(2) is a linear differential equation of the form

; where ;

I.F. = .

Multiplying (1) throughout by cos3x and integrating, we get

                        .

 

Q.135  Show that the functions 1, sinx, cosx are linearly independent.                            (4)

Ans:

For functions 1, sin x, cos x to be linearly independent the Wronskian of the functions given by

   

has to be non-zero. Here it is (-1)  0. Hence the result.

 

Q.136  Using method of undetermined coefficients, find    the  general  solution of   the equation .                                                                                      (8)

 

Ans:

For obtaining the general solution of

                            -------------------- (1)

            We have to determine , the complementary function that is the solution of (1) without the RHS and the P.I. Here for determining the P.I. we have to use the method of undetermined coefficients. For we have to write the auxiliary/characteristic equation which is . The roots of the equation are m = 2+3i , 2-3i  . The complementary function is  . We note that  appears both in the complementary function and the right hand side r(x). Therefore, we choose . Consequently we have

            ,

           

            Substituting in the given equations, we get

Comparing, both sides we get . Therefore, the particular integral is. The general solution is .

 

Q.137  Solve .                                                          (8)

 

Ans:

The given differential equation has to be transformed to the differential equation with constant coefficients by changing the independent variable x to t using the transformation

            . Thus,

            The given d.e. assumes the following form:

                         --------------- (1)

            Characteristic equation of (1) is                        --------------- (2)

            Roots of (2) are .

            Thus, C.F. =

P.I. =

           

           

 

Q.138  In an L-C-R circuit, the   charge   q   on   a plate of a condenser is given by 

. The circuit  is tuned to resonance so that   . If  initially the current I and the charge  q be zero, show that, for small values of R/L, the current in the circuit at time t is given by (Et/2L)sinpt.                                                                          (8)

 

Ans:

Given differential equation is. It’s A.E. is  which gives . As R/L is small,   0 therefore, to the first order in R/L, , where .Thus, , rejecting terms in  etc.

Thus P.I. = .

Thus the complete solution is .

Initially when t=0, q=0, i=o, we get Thus, substituting these values of constants, we get

 

Q.139  Find a linear transformation T from R3 into R3  such that                                       (8)

 

Ans:

Let the matrix . Thus

 Solving, .

Q.140  Examine, whether the matrix A is diagonalizable. .  If, so, obtain the   matrix P such that  is a diagonal matrix.                                                         (8)

 

Ans:

The characteristic equation of the matrix A is given by

.

            Eigenvector corresponding to λ = 5 is the solution of the system

            . The solution of this system is .

            Eigenvector corresponding to λ =-3 is the solution of the system

. The rank of the matrix is 1. Therefore,  the system has two linearly   independent    solutions. Taking z = 0,y = 1, we get eigenvector as , and taking y = 0, z = 1, we get eigenvector as . Thus the matrix P is given by

 

Q.141  Investigate the values of µ and λ so that the equations

, has (i) no solutions (ii) a unique solution and (iii) an infinite number of solutions.                                                                  (8)

 

Ans.

We have . The system admits of unique solution if and only if, the coefficient matrix is of rank 3. Thus  Thus for a unique solution

λ ≠ 5 and μ may have any value.  If λ = 5, the system will have no solution for those values of μ for which the matrices and are not of the same rank.  But A is of rank 2 and K is not of rank 2 unless μ=9. Thus if  λ = 5 and μ ≠ 9, the system will have no solution.  If  λ = 5 and μ=9, the system will have an infinite number of solutions.

 

Q.142  Find the power series solution about the point of the equation .      

(11)                               

Ans:

            The power series can be written as .  Substituting in the given equation, we get

           

. Setting the coefficients of successive powers of x to zero, we get

, where are arbitrary constants. We obtain  The power series solution is

           

 

Q.143  Express f(x)= in terms of Legendre Polynomial.                         (5)

 

Ans:

As

           

 

Q.144  Express  in terms of  and  .                                                            (8)

 

Ans:

We know 

            Putting n=1, 2, 3, 4 successively, we get                    

   Substituting the values, we get

 

Q.145  Ifshow that.       (8)

           

Ans:

As. Then  is given by

 ,

            --

 

Q.146  Find the extreme value of the  function   f(x,y,z) = 2x + 3y + z  such that x2+y2=5 and x + z =1                                           

(8)

Ans.

We have the auxiliary function as

 , ;                            ----- (1,2,3)

Using (3) in (1) we get   -- (4).

Using (2) we get  ----- (5).

Using Equations(4) and (5) in  we get . For , we arrive at the following point.

 

For the extremum,  substituting in =0, we get  For  , we get the point  For  we get the point

Q.147  Show that the function  is continuous at (0,0) but its partial derivatives of first order does not exist at (0,0).                                                (8)

 

Ans.

As

 If we choose then  Therefore Hence the given function is continuous at (0,0).  Now at (0,0)  does not exist. Therefore fx does not exist at (0,0). Similarly   does not exist. Therefore fy does not exist at (0,0).

 

Q.148  Evaluate the integral where T is region bounded by the cone

 and the planes z=0  to z=h in the first octant.                        (8)

 

Ans.

The required region can be written as  thus

           

           

 

Q.149  Show that the approximate change in the angle A of a triangle ABC due to small changes  in the sides a, b, c respectively, is given by  where ∆ is the area of the triangle. Verify that                                 (8)

 

Ans.

For any triangle ABC, we have under usual notations

            , ,

            Differentiating the first of the above, we get

           

                        =

                        =

                        =

                        =

            Or

                    QED (Ist part)

                 ]

                

            Adding the above three expressions for  we get

             

                       

Q.150  If  Show that              (8)

 

Ans.

 It is given that

Adding , subtracting

       =

                  =

Alternative operate  operator on

 

Q.151  Using the method of variation of parameter method, find the general solution of differential equation                                                                                         (8)

 

Ans.

            The characteristic equation of the corresponding homogeneous equation is m2+16=0. The complementary function is given by y=Acos4x + Bsin4x  where y1= cos4x and

y2= sin4x are two linearly independent solutions of the homogeneous equation. The Wronskian is given by

           

            (P.I = A(x)cos4x + B(x)sin4x; where A(x) and B(x) are given by A(x) as above.

            Also sin4x=2sinxcosx and cos4x= 2cos22x -1)

           

 

Q.152  Find the general solution of the equation .                     (8)

 

Ans.

The characteristic equation of the homogeneous equation is  The roots of the equation are m = 2+3i , 2-3i  . The complementary function is  

           

            =   (a case of failure)

            = .

            Thus y(x) = C.F. + P.I.

            .

 

Q.153  Find the general solution of the equation .    (8)

Ans.    

Put . Thus the given equation becomes    which is a linear equation with constant coefficients. It’s A.E. is

 

Thus C.F. = , and

P.I. =

 

Q.154  Solve                                                                                 (8)

 

Ans.

The equation can be written as    which is linear equation

 

Q.155  The set of vectors {x1, x2}, where x1 = (1,3)T, x2 = (4,6)T is a basis in R2. Find a linear  transformations    T    such    that     Tx1   = (-2,2,-7)T and Tx2 = (-2,-4,-10)T              (8)

 

Ans.

 Let the matrix .

;             

;              

;            

Solving the above system of equations we get

Thus

A=

Q.156  Show that the matrix A is diagonalizable. .  If, so, obtain the   matrix P such that  is a diagonal matrix.                                                                               (8)

 

Ans.

            The characteristic equation of the matrix A is given by .

            Eigenvector corresponding to λ = 1 is the solution of the system

            . The solution of this system is .

            Eigenvector corresponding to λ =2, 3  are and Thus the matrix P is given by

 

Q.157  Investigate the values of λ for which the equations 

are consistent,   hence find the ratios of x:y:z when λ has the smallest of these value.       (8)

 

Ans.

The system will be consistent if   Thus if λ=0, x=y=z;

For  , system reduces to a single equation 2x + 10y + 6z = 0.

 

Q.158  Find the first five non-vanishing terms in the power series solution of the initial value problem                                       

(11)

Ans.

The power series can be written as .  Substituting in the given equation, 

           

            .

Setting the coefficients of successive powers of x to zero           where are arbitrary constants. We obtain   The power series solution is

                       

 

Q.159  Show that                                                                 (5)

Ans.

Integrating by parts, we get

           

 

Q.160  Show that                                                      (8)

 

Ans.

We know  Putting n=1/2, 3/2,   successively, we get Substituting the values, we get

 

Q.161  Show that                                                                                (8)

 

Ans.

We have to use that                           ---------------- (1)

            We know that Bessel functions , n ≠ 0, 1, 2 --- of various orders can be derived as coefficients of various powers of t in the expansion of the function ; that is

               

            =                       ----------------- (2)

Put

Thus,

                      ------------------ (3)

Using the value of  in (2), we get

Equating real and imaginary parts in the generating function of Bessel’s equation,  .

Squaring and integrating w.r.t.  from  0 to  and noting that  ,.  Thus

           

Adding, we get            

 

Q.162  Compute  for the  function       

 

                        Also discuss the continuity of   at (0,0).                                                                                                                                                                                                (8)

Ans.

For obtaining  and  we need the partial derivatives  and .

            For obtaining these derivatives we use the definition of  and :

            ;    .

           

           

Thus   are  not continuous at (0,0).

 

Q.163  Find  the  minimum   values  of    subject to the condition        (8)

 

Ans.    

Let  . The necessary conditions for extremum is  thus we get .At each of these points, the value of the given function is . Arithmetic Mean  of ,, is AM =

the Geometric Mean of ,, is GM =  Since  we get . Hence, all the above points are the points of constrained minimum and the minimum value of  is .

 

Q.164  The function     is   approximated   by  a  first degree Taylor’s polynomial about the point (2,3). Find a square   with centre at (2,3) such that the error of approximation is less than or equal to 0.1 in magnitude for all points within the square.                                                                                                                                                 (8)

Ans.

We have  

The maximum absolute error in the first degree approximation is given by . Also it is given that ,  therefore we want to determine the value of such that

 

Q.165  Find the Volume of the ellipsoid                                                           (8)

 

Ans.    

Volume = 8(volume in the first octant). The projection of the surface in the x-y plane is the region in the first quadrant of the ellipse .

Thus

Using the transformation x = aX, y = bY, z = cZ, the desired volume can be expressed as

where  which is a sphere of radius 1. Using spherical polar coordinates ,     , .

.

 

Q.166  Solve  the differential equation      (8)

 

Ans.

            Here ; 

                        For the given equation to be exact . Consequently, we determine

                        .

As , equation is not exact. Accordingly, we determine the 1.F. by examining

.

On multiplying throughout by and integrating (using the rule of exact)  d.e. we get

, where k is constant integration.

 

Q.167  Using the method of variation of parameters, solve the differential equation  .                                                                                                                (8)

 

Ans.

            Auxiliary equation is

            . Its P.I. is given by

            Using the method of variation of parameters A(x) and B(x) are given by

            ,    

Where r(x) denotes the RHS of the given differential equation i.e.  and W(x) is the Wronskian

            .

            Thus,   

           

            and the general solution is C.F. + P.I.

            .

 

Q.168  Find the general solution of  the equation .                            (8)

 

Ans.

The characteristic equation of the homogeneous equation is  The roots of the equation are m = -1, -3. The complementary function is  .

P.I. =

Thus

Here

Thus the first term of the P.I. =

Similarly,

; = A + B

.

 

Q.169  The eigenvectors of a 3 x 3 matrix A corresponding to the eigen values 1, 1, 3 are  .Find the matrix A.                                                           (8)

 

Ans.

            From the eigen values 1,1,3 we write the Diagonal matrix D as

                        ; From the eigen vectors we write the Modal matrix

                        ; For obtaining the matrix , we proceed as follows

                       

                       

                       

                        Thus

                       

                                   

 

Q.170  Test for  consistency and solve the system of equations                                                   (8)

                       

 

Ans.

            The given system of equations can be expressed as

             or AX = B

            Using row transformations A can be expressed as

           

            Which is of rank 2. The augumented matrix

           

            is used of rank. Consequently, system is consistent. On solving we get

 where z is a parameter. Thus

 

Q.171  Given that   show that  is a unitary matrix.             (8)

 

Ans.

             ;

                        .

                       

                                      =

                       

                         ------ (1)

                                    For proving that  is a unitary matrix we need the transpose of the above matrix. Consequently

                             ------------------------------------------- (2)

The product of (1) and (2) is a unitary matrix. I =  .

Q.172  Show that the transformation

 is non-singular. Find the inverse transformation.                                                                                                                (8)

 

Ans.

            Writing the given transformation in matrix form Y = AX.

 . Therefore the given matrix A is non-singular and hence the given transformation is also regular. Thus, X = A-1Y .

Hence we arrive at the following expressions for the inverse transformation     

 

Q.173  If u = f(x,y), x = rcosθ, y = rsinθ, then show that

 (8)

            Ans.

                               ---------------- (1)

            Similarly,

           

                               ---------------- (2)

            Squaring (1)and (2) and adding, we get

           

                                               

                        =

 

Q.174  Find the power series solution about the origin of the equation

.                                                                                                                                                                                        (11)

Ans.

The point x = 0  is a regular singular point. The power series can be written as .  Substituting in the given equation, we get

The indicial roots are r = -2, -3.        

Setting the  coefficients of xr+1 to zero, we get

, For r = -2, =0 and for r = -3,  is arbitrary constants. Thus the remaining terms are  We obtain .   Thus . For r = -3,  , --------

The power series solution for r = -3 is  

For r= -2, we get =0,  The power series solution for r = -2 

Q.175  Find the value of   .                                                                                          (5)

 

Ans.

There are two ways of obtaining the value of

(i)                  Through recurrence relation

(ii)                Using Rodrigue’s formula

Through (i) we make use of the following recurrence relation

        ------------------ (1)

 With                              ------------------ (2)

Putting n = 1; we get (Using equation 1)

                                 ------------------ (3)

For n = 2, equation (1) yields

 ---- (4)     

Thus

= ; ~  20.005

Method II :Using Rodrigue’s formula

Thus = 20.0025

                       

Q.176  Prove the Orthogonal property of Legendre Polynomials.                                            (8)

 

Ans.

The orthogonality property of the Legendre’s functions is defined by the relation

                                                          ---------------- (1)

            We first prove (1) form the case m ≠ n.

            Let  and . Thus, u and v satisfy respectively the following differential equations:

                                                   --------------- (2)

                                                     --------------- (3)

            Multiplying equation (2) by v and equation (3) by u and subtracting, we get

           

            Or         --------------- (4)

            Integrating equation (4) w r to x between the limits (-1) to (1) we get

                      --------------- (5)

            Thus, for m ≠ n

           

            Case III; m = n;

            Above result can be proved either through Rodrigue’s formula

                                                                ---------------- (6)

            Or using generating function of the Legendres polynomial, that is

                                                                ---------------- (7)

            However, we use equation (7) to prove (1) for m = n.

            Squaring (7) we get

                                    ---------------- (8)

            Interpreting (8) w.r.to x between (-1) to (+1), we get

                      ---------------- (9)

            Using the orthogonality property for case m ≠ n, we get

           

            Or  = R.H.S.

            Or       = R.H.S.

            Or      = R.H.S.

            Or = R.H.S.

            Equating the coefficients of , we get