Code: D-01 / DC-01                                                                        Subject: MATHEMATICS - I

Time: 3 Hours                                                          June 2006                                            Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

       

a.       Sum of the series  is equal to

 

                   (A)  348551                                        (B)  -1000

(C)    5151                                           (D)  None of the above

       

b.      The value of tan  is

 

(A)                                            (B) 

(C)                                          (D)                                                             

 

             c.   In a triangle ABC, let a = BC, b = CA and c = AB.  If , then

                  

(A)                          (B) 

(C)                         (D)  None of the above

 

             d.   The circles  and  cut orthogonally if the value of p is

 

(A)    3                                                      (B) -2

(C)  -3                                                (D)  1       

 

             e.   The eccentricity of the ellipse  is

                  

(A)     3                                                  (B) 

(C)  5                                                  (D) 

 

             f.    The derivative of   – cos (log x) is 

 

(A)     sin (log x)                                     (B) 

(C)  – sin (log x)                                  (D) 

             g.   The value of the  is

 

(A)     0                                                  (B)  1

(C)  e                                                  (D)  Does not exist

 

             h.   The integral  is equal to

 

(A)    *                                            (B)

(C) 0                                                   (D) 1

 

             i.    The area under the curve  between x = 0 and x = 1 is

 

(A)   1                                                  (B)

(C)                                                (D)

 

             j.    The solution of  is

 

(A)                                         (B) 

(C)                                       (D)

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

  Q.2     a.   Show that the sum to n terms of the series 1.3.5 + 3.5.7 + 5.7.9 + … is .                                                              (8)

       

             b.   If  are the roots of the quadratic equation  and   are the roots of the quadratic equation  then show that . (8)

 

  Q.3     a.   If A + B + C = , prove that  .                                                                    (8)

       

             b.   Show that sin  is a root of the equation .                   (8)

       

 

 

 

  Q.4     a.   Find the value of  such that the circles  and  touch each other.                                 (8)

 

             b.   For what values of k the points  and  are collinear?             (8)

 

  Q.5     a.   Find the equation of the circle for which  is a tangent and   are normals.                                              (8)

       

             b.   Find the values of a, b such that the line ax + by + 1 = 0 is tangent to the hyperbola  and is parallel to the line y = 2x  + 4.              (8)

 

  Q.6     a.   Evaluate the limit.                                                          (8)

 

             b.   Consider the function .  Find  using first principle.  Is  continuous at x = 0?                                              (8)

 

  Q.7     a.   Find the local maximum and minimum values of in .              (8)

 

             b.   Find the area of the region bounded by ,  and             x = 1.                   (8)

 

  Q.8     a.   Evaluate the following integral .                                            (8)

            

             b.   Evaluate  the following definite integral .                                     (8)

 

  Q.9     a.   Solve the differential equation

 

                   .                                                                                  (8)

 

             b.   Solve the differential equation

                   .                                                                       (8)