AMIETE – ET (NEW SCHEME)      Code: AE59

 

Subject: CIRCUIT THEORY & DESIGN

Flowchart: Alternate Process: DECEMBER 2009Time: 3 Hours                                                                                                     Max. Marks: 100

 

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

                                

             a.  The internal resistance of an ideal current source is 

 

                  (A) infinity                                            (B) zero

                  (C) 1M                                            (D) 10

 

             b. The number of chords present in a graph having ‘n’ number of nodes and ‘b’ number of branches is  

 

                  (A) n-1                                                 (B) n+1

                  (C) (b-1)                                              (D) b-(n-1)

 
                             

             c.  The T-parameters of given network in Fig.1   

                  (A)                                           (B)

                  (C)                                           (D)

                                                                                                                                              

             d.  Voltage drop across an inductor is

                  (A) Li                                                   (B)

                  (C)                                               (D)

                          

             e.  The Q factor of a series RLC circuit is  

                  (A)                                              (B)

                  (C)                                            (D)

 

             f.   The impedance of a branch consisting of  resistor and 2H inductor in series is  

                  (A)                                              (B)

                  (C)                                             (D)

 

 
             g.  of the network given in Fig.2 is  

                  (A)                                          (B)

                  (C)                                          (D)

 

             h.  The defining equations of ‘h’ parameter for describing two port network are   

(A)                         (B)

       

                                                                              (C) (D)

 

             i.   At each pole the network function becomes

                  (A) zero                                               (B) one

                  (C) infinite                                            (D) finite

 

             j.   Laplace inverse of a function  is  

                  (A)                                         (B)

                  (C)                                     (D)

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

  Q.2     a.   Draw the equivalent circuit of practical voltage source and current source.  Also explain their terminal v – i characteristics.                                     (6)

                                      

 
         b.   In the network shown in Fig.3 all sources are time invariant.  Determine the  numerical value of .                                                                        (10)

 
 

 

 

 

 

 

 

 

 

 


  Q.3     a.   In the network shown in Fig.4, switch ‘k’ is changed from position a to b at       t = 0.  Solve for i,  and  at , if , L = 1H, and V = 100 volts.                              (8)

            

             b.   The circuit shown in Fig.5 is a shunt peaking circuit.  Show that the admittance Y(s) is of the form.  Express  in terms of R, L and C.                   (8)

 
 

 

 

 

 

 

 

 


 

  Q.4     a.  In the network shown in Fig.6, the switch k is closed at t = 0 with the network  previously unenergized.  Find  and , using Laplace transform method.                                                             (8)

 

 

 
 

 

 

 

 

 

 

 

 

 


             b.   Find the Laplace transform of the function f(t) shown in Fig.7.                             (8)

 

  Q.5     a.   For the RC network shown in Fig.8, find the transform impedance Z(s) and   express it in factored form.                                                                (6)

 

 
 

 

 

 

 

 

 

 


            

 

             b.   Find  in the network shown in Fig.9 using thevenin theorem, Switch K is closed at t = 0.                         (10)

 

 

 

 

 

 

  Q.6     a.   Find the voltage transfer function  & input impedance  for the network shown in Fig.10.                                                            (8)

                  

 
 

 

 

 

 

 

 

 

 

 


             b.   Test whether the given polynomial  is Hurwitz or not?                       (8)

 

                 

  Q.7     a.   Obtain expressions for ‘h’ parameter in terms of Z and Y parameters                  (8)

 

             b.   Find Z parameters for the two port network shown in Fig.11.                             (8)

 
                                                                                                                                                

 

 

 

 

 

 

 

 

 

 

  Q.8     a.   Determine the Foster first form after synthesizing the RL driving point impedance function .                         (8)

 

             b.   Synthesize the Cauer first form of LC driving point impedance function .                                                                (8)

  Q.9     a.   Synthesize the positive real function .                          (9)

 

             b.   Write a note on comparison of maximally flat and Chebyshev approximation in terms of low pass filter design.                                                                                                               (7)