AMIETE – ET/CS/IT (NEW SCHEME)      Code: AE56/AC56/AT56

 

Subject: ENGINEERING MATHEMATICS - II

Flowchart: Alternate Process: DECEMBER 2009Time: 3 Hours                                                                                                     Max. Marks: 100

 

 

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

       

             a.  If be an analytic function,  is equal to 

 

                  (A) +1                                                  (B) -1                                                                               

                  (C) +2                                                  (D) -2                                                                  

 

             b. Under the transformation  circle  is transformed in    -plane into a  

 

                  (A) straight line                                     (B) parabola

                  (C) ellipse                                             (D) circle

 

             c.  Value of the integral  where C is  is

 

                  (A)                                                (B)

                  (C)                                                (D)

 

             d.  The position vector of a particle at time t is .  If at t = 1, the acceleration of the particle be perpendicular to its position vector, then a is equal to

 

                  (A) 0                                                    (B) 1

                  (C)                                                   (D)

 

             e.  If the surface  be orthogonal to the surface  at the point  then b is equal to

            

(A) 0                                                    (B) 1

                  (C) 2                                                    (D) 3

 


             f.   If  and  is a constant vector, curl  is equal to 

            

                  (A)                                                   (B)

                  (C)                                                   (D)

 

             g.  is equal to  

                 

                  (A)  2                                                   (B) 3

                  (C)  4                                                   (D) 6

            

             h.  The differential equation of all spheres whose centres lie on z-axis is

 

(A)                                     (B)

                  (C)                                    (D)

 

             i.   The probability that a leap year selected at random will contain 53 Saturdays is

                 

                  (A) 0                                                    (B)

                  (C)                                                   (D)

 

             j.   The variance of a Binomial distribution is  

 

                  (A) np                                                  (B) npq                                                                             

                  (C)                                             (D)

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   If f(z) is an analytic function with constant modulus, show that f(z) is constant.                     (8)

                  

             b.   Show that the transformation  maps the families of lines x=constant and y=constant into confocal hyperbolas and confocal ellipses respectively.                                                    (8)

       

  Q.3     a.   State and prove Cauchy’s integral formula.                                                          (2+6)

                                                                                                                                                     

             b.   Evaluate  , where C is .                                         (8)

 

  Q.4     a.   Find the directional derivative of  at the point (2, -1, 1) in the direction of the vector i+2j+2k.                                                                                                            (8)

            

             b.   Show that                                                     (8)

 

Q.5    a.   Use Green’s theorem to evaluate

                where C is a plane triangle enclosed by the lines  and .       (8)

 

             b.   Use divergence theorem to evaluate , where  and S is the surface of the sphere .                (8)

       

  Q.6     a.   Estimate the values of f(22) and f(42) from the following available data                   

x:

20

25

30

35

40

45

f(x):

354

332

291

260

231

204

                  

       

 

                                                                                                                                        (4+4)

 

             b.   Find an approximate value of  by calculating upto 4 decimal places, by Simpson’s  rule;  ,  dividing the range into 10 equal parts.                                         (2+6)

 

            Q.7      a.         Solve                                          (8) 

 

            b.    Solve                                                                                            (8)

                

  Q.8     a.   A and B throw alternately with a pair of dice.  The one who throws 9 first wins.  If A starts the game, compare their chances of winning.        (8)

 

             b.   An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers.  The probability of accident is 0.01, 0.03 and 0.15 respectively.  One of the insured persons meets an accident.  What is the probability that he is a car driver?                                                                     (8)

 

  Q.9     a.   In 800 families with 5 children each, how many families would be expected to have

                   (i)   2 boys or 3 boys                           (ii)   atleast one boy

                   (iii) 5 girls                                            (iv)  5 boys                                (2+2+2+2)

 

             b.   For a continuous probability distribution

                  

                   Find and the mean and the variance of the distribution.                          (2+3+3)