AMIETE – ET/CS/IT (OLD SCHEME)

 

Flowchart: Alternate Process: DECEMBER 2009Code: AE35/AC35/AT35                                                                 Subject: MATHEMATICS-II

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or the best alternative in the following:                                   (2x10)

 

             a.  Eliminating a and b from the  the partial differential equation is

 

                  (A)                                 (B)

                  (C)                                 (D)                                                  

 

             b.  Solution of  is

                  (A)                                  (B)

                  (C)                                 (D)

 

             c.  Residue of  at z = 0 is

 

                  (A)  1                                                   (B)  -1

                  (C)  2                                                   (D)  0

 

             d.  The function is  not differentiable if the value of  z   is equal to

 

 

                  (A)  –1                                                 (B)  1

                  (C)  2                                                   (D)  0

 

             e.  The value of integral  is given by

 

                  (A)                                              (B) 

                  (C)                                                 (D) 

 

             f.   The angle between the tangent to the curve  at the point t = 1 and t = -1 is

 

 

                  (A)                                   (B) 

                  (C)                                   (D) 

 

             g.  If where u, v are scalar fields and is a vector field, the value of  is equal to

 

 

                  (A) 6                                                    (B) -8

                  (C) 8                                                    (D) 0

       

             h.  The work done in moving a particle in the force field  along the curve  from x = 0  to x = 2 is equal to

 

                  (A) 15                                                  (B)  17

                  (C)  16                                                 (D)  21

 

             i.   The value of k for the probability density function of a variate X is equal to

 

       

X

0

1

2

3

4

5

6

P(X)

k

3k

5k

7k

9k

11k

13k

                 

                  (A) 1/30                                               (B)  1/40

                  (C)  49                                                 (D)  1/49

 

             j.   In a Poisson distribution if 2P(x=1)=P(x=2), then the variance is equal to

 

                  (A)  4                                                   (B)  0

                  (C)  -1                                                 (D)  2

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   A tightly stretched  string with fixed end points x = 0 and x = l is initially in a position given by . If it is released from rest from this position, find the displacement y (x,t).          (8)

       

             b.   Solve the equationwith boundary conditions u(x,0)=3sin(nπx), u(0,t)=0 and u(1,t) = 0, where 0<x<1, t>0.                                                                                                       (8)

 

  Q.3     a.   X is a continuous random variable with probability density function given by    

                   Find standard deviation and also the mean deviation about the mean.                   (8)

                  

             b.   If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction.                                                                (8)


 

  Q.4     a.   A transmission line 1000 km. long is initially under steady-state conditions with potential 1300 volts at the sending end (x=0) and 1200 volts at the receiving end (x=1000). The terminal end of the line is suddenly grounded, but the potential at the source is kept at 1300 volts. Assuming the inductance and leakance to be negligible,  find the potential v(x,t).        (8)                                                                        

 

b.      If r is the distance of a point (x,y,z) from the origin, prove that is the unit vector in the direction OZ.                     (8)

 

  Q.5     a.   If where S is the surface of the paraboloid 2z =x2+y2 bounded by z = 2.  Evaluate using Stoke’s theorem.  (8)

 

             b.   Determine whether  is a conservative field? If so find the scalar potential. Also compute the work  done in moving the particle from (0,1,-1) to (π/2,-1,2).                                                           (8)

 

  Q.6     a.   Evaluate  where S is the surface of Ellipsoid ax2+by2+cz2=1.                        (8)

 

             b.   The following data are the number of seeds germinating out of 10 on damp filter paper for 80 sets of seeds.  Fit a binomial distribution to these data:                                                               (8)

                  

X

0

1

2

3

4

5

6

7

8

9

10

F

0

20

28

12

8

6

0

0

0

0

0

                  

  Q.7     a.   Show that the function  is not analytic at the origin even though CR equations are satisfied thereof.                                                (8)

 

             b.   Find the bilinear transformation which maps the points z = 1, i , -1 onto the points w = i , 0, -i.  Find the image of |z|<1.                                     (8)   

 

  Q.8     a.   Find Taylor’s expansion of                                             (8)

             b.   Evaluate .                                                                      (8)

 

  Q.9     a.   Using complex integration, show that    (8)

 

             b.   Find the image in the w-plane of the disk |z-1| ≤ 1, under the mapping         w = 1/z.                       (8)