AMIETE – ET (OLD SCHEME)

 

Code: AE07              Subject: NUMERICAL ANALYSIS & COMPUTER PROGRAMMING

Time: 3 Hours                                                                                                     Max. Marks: 100

Flowchart: Alternate Process: DECEMBER 2009                                                 

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

 

a.    The value of  is approximated by 22/7. If seven significant digits are           used, the percentage relative error in this approximation is

    

                                                                 (A)  0.4.                                                (B)  0.04.

(C)   2.2.                                             (D)  4.

 

b. A root of the equation  is near  Using one iteration of     the Newton-Raphson method, the next approximation to the root is obtained as

                      

(A)    -1.25115.                                    (B)  -1.29856.                  

(C)  -1.70161.                                    (D)  1.26211.

 

c.  The data P(1) = 14, P(2) =35, P(3) = 72 is given. An approximation to P(2.5) using all the data values is given by 

                                                                

(A)    61.5                                            (B)  53.5

(C)  56.0                                            (D)  51.5

 

d.   Let  be a third degree polynomial. Then, the forward difference is given by                                                                

 

(A)     6a.                                               (B)  0.     

(C)  3a.                                               (D)  6a + b.                      

 

             e.   The value of the integral  evaluated by the trapezoidal rule with h = 1, is obtained as

                                 

(A)     16.292                                         (B)  18.292

(C)  15.322                                         (D)  16.992

 

             f.    The initial value problem  y(0) = 1 is given. The approximation to y(0.4) obtained by the Euler method with h = 0.2 is

 

(A)     1.0.                                              (B) 0.62.

(C)  0.82.                                            (D)  0.92.             

 

             g.   If  is an eigen value of A, then eigen value of A-1 is

 

(A)                                                  (B)  -

(C)  -                                               (D) 

   h.   If f(x) = , then the value of f[a,b] will be

(A)                                                   (B)   

(C)                                                   (D) 

             i.    For the Simpson’s rd rule, the interpolating polynomial is a

(A)    Straight-line                                  (B)  Parabola

                   (C)  Cubic  curve                                 (D)  None

 

             j.    The value of the integral using Gaussian integration formula for n = 2 is

                   (A)                                               (B) 

                   (C)                                           (D)  None

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

Q.2a.     A root of the equation    is to be determined. Obtain an interval of length 1 unit, in which a positive root lies. Taking the end points of this interval as initial approximations, perform two iterations of the secant method to find approximations to the root                                                      (7)          

 

     b.     Write a C program to compute using while loop. Output x, n and .                (6)

 

      c.     If  , then find the values of a and b.                 (3)

 

Q.3a.     Perform four iterations of the Newton-Raphson method to find the smallest positive root of the equation

 

                                           f(x)=x3-5x+1=0                                                                        (8)

 

b.   Using Lagrange interpolation, find  from the table of values

                                                                                                      (8)          

 

Q.4a.   Derive the least squares straight line approximation  for a data of N values  Hence, obtain the least squares straight line approximation to the data

 

                                                                                                                      

             Also, find the least squares error.                                                                              (8)                                                                                             

                  

     b.     Write a C program to find a simple root of  by the regula-falsi method. Input (i) a, b (two initial approximations between which the root lies), (ii) n (maximum number of iterations) and (iii) error tolerance “eps”. Output (i) approximate root, (ii) number of iterations taken. If the inputted value of n is not sufficient, the program should write “Iterations are not sufficient”. Write the subprogram foras.                                                                         (8)                                                             

 

Q.5a.   The following data represents the function  

                 

            Estimate  using the Newton’s backward difference interpolation. Find the magnitude of the actual error.                                                                                 (8)

 

     b.    The system of equations   has a solution near x = 0.7, y = 0.3. Perform two iterations of the Newton’s method to obtain the root.                                          (8)

 

Q.6a.   Find the inverse of the coefficient matrix of the system of equations

                          

            by the Gauss-Jordan method with partial pivoting and hence solve the system.            (8)                            

 

b.   The system of equations

                       

         is given. Using the Gauss-Seidel iteration scheme in matrix form for its solution, find whether the scheme converges. If it converges, find the rate of convergence.   (8)

 

Q.7a.   The following data is given

 

             x           1.0         1.5         2.0         2.5            3.0

             f(x)       3.0         6.625     13.0       22.875     32.5

         From this data, evaluate   using the Simpson rule with three and five points.                  (7)                                                                                        

 

     b. Write a C program to evaluate , by trapezium rule of integration based on n + 1 points. Input the values of n, a, b. Write as a function sub- program. Output all the data and the computed value.    (9)

 

Q.8     a.  The formula  is suitable for approximating  where a is the last value in the data. Calculate  from the table of values, using all possible step lengths.

 

                  x           1.6             1.8           1.9            1.95           2.0

                   f(x)     7.5530      8.8497      9.5859      9.9787       10.3891                             (8)

 

b.    The formula   is being used to compute  from a table of values. Using Taylor series, find the leading term of the error. Derive the formula for obtaining the improved (Richardson’s) extrapolated value of. In a particular problem, the following results were obtained with different step lengths, using the above formula.

 

        h               0.4               0.2

                             0.52601       0.53671

                   Compute the improved (Richardson’s) extrapolated value of.             (8)

 

Q.9a.   Gauss-Legendre two point integration formula can be written as

                              p          

             Determine the values of b, d, p.                                                                                (7)

 

     b.     Using the Gauss-Laguerre two point formula, evaluate the integral                           (4)

 

c.     Use Runge-Kutta method of fourth order to determine y(0.2) with h = 0.2, for the initial value problem                                  (5)