AMIETE – CS (OLD SCHEME)
 Code: AC10                                                                         Subject:
DISCRETE STRUCTURES
Code: AC10                                                                         Subject:
DISCRETE STRUCTURESNOTE: There are 9 Questions in all.
·      Question 1 is compulsory and
carries 20 marks. Answer to Q.1 must be written in the space provided for it in
the answer book supplied and nowhere else.
·      Out of the remaining EIGHT
Questions answer any FIVE Questions. Each question carries 16 marks.
·      Any required data not explicitly
given, may be suitably assumed and stated.
Q.1       Choose the correct or the best alternative in the following:                                  (2 10)
10)
           
             a.   How many
number of rows are there in the truth table for a compound proposition with 20
variables?
                   
                   (A) 220                                                (B) 210
                   (C) 219                                                (D) none
             b.   The number of permutations of {a,b,c,d,e,f,g}
ending with a are 
                   (A) 600                                               (B) 720
                   (C) 560                                               (D) none
             c.   f(x) = log (x+ ) is
) is
                   (A) Even function                                 (B) Odd function
                   (C) Periodic function                            (D) None
             d.   The number of edges in a Tree with n vertices
are
                   (A) n                                                   (B) n–1
                   (C) n–2                                               (D) none
             e.   A relation that is reflexive, symmetric and
transitive is a 
                   
                   (A) function                                         (B) partial order 
                   (C) equivalence relation                       (D) none
             f.    Which value of the Boolean variables x and y
satisfy xy=x+y 
                   (A) (1,1)                                             (B) (0,1)
                   (C) (1,0)                                             (D) None 
             g.   The String 11101 is in the set
                   (A) {1}*{0}*{1}*                              (B)
{1}*{0}*{0}*
                   (C) {1}*{1}*{1}*                              (D)
None
             
h.   A
path in a graph G is called an Euler path if it includes every edge
                   (A) Once                                             (B) Twice
                   (C) Thrice                                           (D) None
             i.    The set of Intelligent students in a class
is
                   (A) null set                                           (B) finite set
                   (C) singleton set                                   (D) not a well defined collection.
             j.    The number of non-negative integral
solutions to x+y+z+w=20 is
                   (A) 882                                               (B) 1771
                   (C) 1770                                             (D) none 
Answer any FIVE Questions out
of EIGHT Questions. 
Each question carries 16
marks.
  Q.2     a.   Let A = {1,2,4}, B = {2,5,7}, C = {1,3,7}.
                   Show that 
 (4)
                                                    (4)
             b.   Determine
whether a relation R on the set of all web pages is reflexive, symmetric,
anti-symmetric, and/or Transitive, where (a,b)  R iff
 R iff              
                   (i)   Every one who
has visited web page a has also visited web page b               (3)
                   (ii)  There
are no common links found on both web page a and web page b        (3)
                   (iii) There is at least one common link on web page a
and web page b                 (3)
                   (iv) There is a web page that includes links to both web
page a and web page b                 (3)
  Q.3     a.   let
Q be the set of rational numbers and f: Q Q be defined by f(x) = ax+b (a
Q be defined by f(x) = ax+b (a 0). Show that f is bijective. Also find a formula that
defines the inverse function f–1 
                                                      (8)
0). Show that f is bijective. Also find a formula that
defines the inverse function f–1 
                                                      (8)
             b.   Write Fleury’s
algorithm in pseudocode.                                                             (8)
  Q.4     a.   Define
Hasse diagram. Draw the Hasse diagram for the partial ordering {(A,B):A B} on the power set P(S), where S={1,2,3}                        (8)
B} on the power set P(S), where S={1,2,3}                        (8)
             b.   Show that the
relation R on Z Z defined by (a,b)R(c,d) iff a+d=b+c is an equivalence
relation.                                                                 (8)
Z defined by (a,b)R(c,d) iff a+d=b+c is an equivalence
relation.                                                                 (8)
                                                                        
  Q.5     a.   Define
             b.   Write an
algorithm/ method to find the second minimum spanning tree of a graph.                (10)
  Q.6     a.   Let G=(V,T,S,P) be the phrase structure
grammar with V={0,1,A,B,S}, T={0,1}, and the set of production rules P
consisting of S 0A, S
0A, S 1A, A
1A, A 0B, B
0B, B 1A, B
1A, B 1.                                       (8)
1.                                       (8)
                   (i)   Show that 10101
belongs to the language generated by G.
                   (ii)  Show
that 10110 does not belong to the language generated by G.
             b.   A farmer buys
4 cows, 3 goats and 2 hens from a man who has 6 cows, 5 goats and 7 hens. How
many choices does the farmer has?                (8)
  Q.7     a.   Show
that (p q)
q) (p
(p q) is a tautology                                                           (8)
q) is a tautology                                                           (8)
             b.   Prove that if
n is a positive integer, then n is odd iff 5n+6 is odd.                          (8)
  Q.8     a.   Compute
A(2,1) where A:N N
N N is defined by                                            (8)
N is defined by                                            (8)
                                        A(0,y)=y+1
A(x+1,0)=A(x, 1)
A(x+1,y+1)=A(x+1,y)
b. 
Prove that a simple graph is connected iff it has a spanning Tree.                          (8)
             
  Q.9     a.   How
can you obtain NAND gate using NOR gates only.                                    (8)
             b.   Show that a
positive logic NAND gate is equivalent to negative logic NOR gate.                (8)