AMIETE - ET (OLD SCHEME)

Time: 3 Hours
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which is not a property of VHDL
(A) Parallel language
(B) Strongly typed language
(C) Uses Implicit default sequential control flow
(D) Uses explicit time delays
b. Component instantiation is use in \qquad modeling
(A) Structural
(B) Behavioral
(C) Data flow
(D) High level model
c. The signal assignment statement is denoted by the symbol
(A) ' $==$ '
(B) ${ }^{\prime}=$ '
(C) '=>’
(D) ' $<=$ '
d. Pattern recognizer can be implemented using \qquad
(A) Decoder
(B) Counter
(C) Mux/De-mux
(D) Shift register
e. Operators belong to \qquad of data subsystem.
(A) Functional module
(B) Data paths
(C) Storage module
(D) Conditional points
f. \qquad has no AND gates.
(A) Coincident Decoder
(B) Tree Decoder
(C) Priority encoder
(D) Binary encoder
g. PLA is a combinational module that provides \qquad
(A) NOT-AND-XNOR
(B) NOT-AND-OR
(C) NOT-AND-NOR
(D) NOT-AND-XOR
h. In tabular representation of switching functions, an integer j is associated with each n-tuple. For n-tuple j is defined as
(A) $\mathrm{j}=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{x}_{\mathrm{i}} 2^{\mathrm{i}+1}$
(B) $\mathrm{j}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} 2^{\mathrm{i}}$
(C) $\mathrm{j}=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{x}_{\mathrm{i}} 2^{\mathrm{i}}$
(D) $\mathrm{j}=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{x}_{\mathrm{i}} 2^{\mathrm{i}-1}$
i. Microcontroller design can be represented using
(A) state machine
(B) activity chart
(C) flow chart
(D) micro machine
j. A data path is said to be \qquad if it connects a unique source and destination.
(A) Indirected
(B) Directed
(C) Erected
(D) Dedicated

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Explain data representation and coding in digital systems. Give an example for each.
b. Design a BCD-to-Excess- 3 code converter using basic gates.
c. Explain the features of Computer Aided Design tools in digital systems.
Q. 3 a. Use Boolean algebra to prove the following:
$a^{\prime} b^{\prime}+a b+a^{\prime} b=a^{\prime}+b$
b. Mention limitations of two-level networks in combinational systems.
c. Write short notes for the following:
(i) Serial Binary Adder.
(ii) Threshold switching function.
Q. 4 a. Write a program in VHDL to implement the following ALU operations:
(i) Add
(ii) Subtract
(iii) Multiply
(iv) Divide
b. Explain the behavioral and structural modeling in VHDL.
c. Explain delta delay and transport delay in VHDL.
Q. 5 a. Explain the role of multiplexer as a Universal Combinational Module.
b. Give the representation of n -bit register and mention its applications. Label data and control signals in a n-bit register.
c. Compare PAL and GAL devices.
Q. 6 a. Explain hazards and race in asynchronous sequential machines. Give an illustration.
b. Design a two input, two output sequence detector to detect a sequence 0101 .
c. Mention the features of flow table reduction in asynchronous sequential machines.
Q. 7 a. Design data subsystem for to displaying values from 1 to 10 . Draw the relevant block diagram with data and control signals.
b. Compare the features of microprogrammed controller with respect to controller implemented on a fixed network.
c. Give an example to illustrate horizontal and vertical encoding in control fields of microinstruction.
Q. 8 a. Determine the minimal state table that is equivalent to the following:

Input		
$P S$	$x=0$	$x=1$
a	$f, 0$	$b, 0$
b	$d, 0$	$c, 0$
c	$f, 0$	$e, 0$
d	g, l	$a, 0$
e	$d, 0$	$c, 0$
f	f, l	b, l
g	$g, 0$	$h, 1$
h	$g, 1$	$a, 0$
$N S, z$		

b. Explain the working of asynchronous sequential machine and give its representation.
c. Explain the role of functional decomposition in combinational systems.
Q. 9 a. Write short notes from any THREE of the following:
(i) Microprogrammed Controller
(ii) Storage modules of a Data subsystem
(iii) Process statement in VHDL
(iv) Programmable Sequential Arrays
b. Give an example to illustrate multiple output switching function and their minimization.

