ROLL NO.

Code: AE09

Subject: ANALOG & DIGITAL ELECTRONICS

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following: (2×10)

- The common mode rejection ratio of an op-amp is a.
 - (A) much larger than unity **(B)** smaller than unity **(D)** None of these
 - (C) unity
- b. An ideal amplifier has
 - (A) Noise figure of 0 dB
 - (C) Noise figure of unity
- c. Output voltage of a comparator is
 - (A) Sine wave
 - (C) Square wave
- **(B)** Triangular wave

(B) Noise figure of more than 0 dB

(D) Noise figure of less than 1 dB

(D) Sawtooth wave

(B) Lower propagation delay

d. An ideal current controlled voltage source has

- (A) $R_i = \infty, R_o = \infty$ (**B**) $R_i = 0, R_o = \infty$
- (C) $R_i = 0, R_o = 0$ (**D**) $R_i = \infty, R_o = 0$
- e. As compared to TTL, ECL has
 - (A) Lower power dissipation
 - (C) High propagation delay
- (D) High noise margin
- f. The number of input and output in a full adder are (A) 2 and 1 **(B)** 2 and 2
 - (C) 3 and 3 **(D)** 3 and 2
- g. Which of the following counter results in least delay
 - (A) Ring counter **(B)** Ripple counter
 - (C) Synchronous counter (**D**) Asynchronous counter

ROLL NO.

Code:	: AE09 Subject: ANA	LOG & DIGITAL ELECTRONICS		
(A) (B) (C)	10% from maximum value 10% to 90% from maximum value	ken for the collector current to fall to		
(A)	ich memory requires periodic recharg All ROMS (I	B) All RAMS		
(C) j. In C (A) (B) (C) (D)	CCD	n 1 & 0 logical		
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.				

- Q.2 a. Draw the circuit of a Widlar current source and explain its operations. (8)
 - b. When a voltage $V_1 = +40\mu V$ is applied to the non inverting input terminal and a voltage $V_2 = -40\mu V$ is applied to the inverting input terminal of an opamp, an output voltage $V_0 = 100mV$ is obtained. But when $V_1 = V_2 = +40\mu V$, one obtain $V_0 = 0.4mV$. Calculate the voltage gain for the difference and common-mode signals and the common-mode rejection ratio. (8)
- Q.3 a. What are switching capacitor filter? Mention their advantages. (8)
 - b. Explain the operation of first order low pass Butter-worth filter. (8)
- Q.4 a. Determine the output voltage caused by each bit in a 6 bit ladder if the input level are 0=0V and 1=+16V. Determine the resolution and full scale output of this circuit. Also find out the voltage from the digital input of 101011. (8)
 - b. Show how a logarithmic amplifier can be built with an op-amp. (8)
 - **Q.5** a. Explain how does Schottky barrier diode differ from a silicon junction diode.

(8)

- b. Describe following terms with respect to logic circuits:
 (i) Noise margin
 (ii) Fan in Fan out
 (iii) Propagation delay
 (iv)Power delay product
 (8)
- Q.6 a. Draw the circuit diagram of a TTL NAND gate and explain its operation. (10)
 - b. Compare the relative merits of TTL, ECL and CMOS logic family. (6)

AE09 / OCTOBER - 2012	2	AMIETE - ET (OLD SCHEME)
-----------------------	---	--------------------------

ROLL NO.

	Code: AE09	Subject: ANALOG & DIGITAL ELEC	TRONICS	
Q.7	U U	nap $f(A, B, C, D) = \sum m(0, 2, 3, 5, 7, 12, 15) + \sum d(1, 4, 8, 1)$,	
	implement the simp	lified function using NAND gates only.	(8)	
	b. Design a 1 bit comp	parator which can compare A=B, A>B, A <b.< th=""><th>(8)</th></b.<>	(8)	
Q.8	a. Show the D flip flop	p and T flip flop implementation from J-K flip flop.	(8)	
	•	What is a Shift Register? Explain Universal Shift register operation with an		
	example.		(8)	
Q.9	Write short note on	any <u>TWO</u> :		
	(i) Dynamic RAM	A Cells		
	(ii) CCDs			
	(iii) Bipolar Memo		(8 ×2)	