\qquad

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The common mode rejection ratio of an op-amp is
(A) much larger than unity
(B) smaller than unity
(C) unity
(D) None of these
b. An ideal amplifier has
(A) Noise figure of 0 dB
(B) Noise figure of more than 0 dB
(C) Noise figure of unity
(D) Noise figure of less than 1 dB
c. Output voltage of a comparator is
(A) Sine wave
(B) Triangular wave
(C) Square wave
(D) Sawtooth wave
d. An ideal current controlled voltage source has
(A) $\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{\mathrm{o}}=\infty$
(B) $\mathrm{R}_{\mathrm{i}}=0, \mathrm{R}_{\mathrm{o}}=\infty$
(C) $\mathrm{R}_{\mathrm{i}}=0, \mathrm{R}_{\mathrm{o}}=0$
(D) $\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{\mathrm{o}}=0$
e. As compared to TTL, ECL has
(A) Lower power dissipation
(B) Lower propagation delay
(C) High propagation delay
(D) High noise margin
f. The number of input and output in a full adder are
(A) 2 and 1
(B) 2 and 2
(C) 3 and 3
(D) 3 and 2
g. Which of the following counter results in least delay
(A) Ring counter
(B) Ripple counter
(C) Synchronous counter
(D) Asynchronous counter
\qquad
h. Storage time of a transistor is the time taken for the collector current to fall to
(A) 90% from maximum value
(B) 10% from maximum value
(C) 10% to 90% from maximum value
(D) 50% from maximum value
i. Which memory requires periodic recharging
(A) All ROMS
(B) All RAMS
(C) Static RAM
(D) Dynamic RAM
j. In CCD
(A) A small charge is deposited for logical 1
(B) A small charge is deposited for both $1 \& 0$ logical
(C) A small charge is deposited for logical 0 and large charge for logical 1
(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Draw the circuit of a Widlar current source and explain its operations.
b. When a voltage $\mathrm{V}_{1}=+40 \mu \mathrm{~V}$ is applied to the non inverting input terminal and a voltage $V_{2}=-40 \mu \mathrm{~V}$ is applied to the inverting input terminal of an opamp, an output voltage $V_{0}=100 \mathrm{mV}$ is obtained. But when $\mathrm{V}_{1}=\mathrm{V}_{2}=+40 \mu \mathrm{~V}$, one obtain $\mathrm{V}_{0}=0.4 \mathrm{mV}$. Calculate the voltage gain for the difference and common-mode signals and the common-mode rejection ratio.
Q. 3 a. What are switching capacitor filter? Mention their advantages.
b. Explain the operation of first order low pass Butter-worth filter.
Q. 4 a. Determine the output voltage caused by each bit in a 6 bit ladder if the input level are $0=0 \mathrm{~V}$ and $1=+16 \mathrm{~V}$. Determine the resolution and full scale output of this circuit. Also find out the voltage from the digital input of 101011.
b. Show how a logarithmic amplifier can be built with an op-amp.
Q. 5 a. Explain how does Schottky barrier diode differ from a silicon junction diode.
b. Describe following terms with respect to logic circuits:
(i) Noise margin
(ii) Fan in - Fan out
(iii) Propagation delay
(iv)Power delay product
Q. 6 a. Draw the circuit diagram of a TTL NAND gate and explain its operation. (10)
b. Compare the relative merits of TTL, ECL and CMOS logic family.
Q. 7 a. Minimize using kmap $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,2,3,5,7,12,15)+\sum \mathrm{d}(1,4,8,11)$ and implement the simplified function using NAND gates only.
b. Design a 1 bit comparator which can compare $\mathrm{A}=\mathrm{B}, \mathrm{A}>\mathrm{B}, \mathrm{A}<\mathrm{B}$.
Q. 8 a. Show the D flip flop and T flip flop implementation from J-K flip flop.
b. What is a Shift Register? Explain Universal Shift register operation with an example.
Q. 9 Write short note on any TWO:
(i) Dynamic RAM Cells
(ii) CCDs
(iii) Bipolar Memory Cell

