AMIETE - ET/CS/IT (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012
Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Signal $x(t)=2 \cos (0.5 t)$ represents a
(A) Full wave rectified signal
(B) Half wave rectified signal
(C) Sinusoidal signal
(D) Cosine signal.
b. If $f_{x y}(x, y)=f_{x}(x) \cdot f_{y}(y)$ then x and y variables are
(A) correlated
(B) independent
(C) dependent
(D) cross-correlated.
c. LTI system represented by $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)$ is
(A) always linear
(B) linear if $\mathrm{n}=1$
(C) non-linear
(D) linear if $\mathrm{n}=-1$
d. To find harmonics of a signal \qquad is used.
(A) Fourier transforms
(B) Fourier series
(C) Z-transform
(D) Laplace transform
e. Real part of Fourier transform is \qquad function of frequency.
(A) positive
(B) odd
(C) even
(D) impulse
f. If $y(t)=d x(t) / d t$ then $H(j w)$ will be
(A) jw
(B) -jw
(C) w
(D) $\mathrm{jw} x(\mathrm{t})$.
g. The signal $x(n)=\delta(n)$, then $X\left(e^{j w}\right)$ results as
(A) 1
(B) 0
(C) -1
(D) - jw
h. $\delta(\mathrm{n}-1) * \delta(\mathrm{n}+1)$ will result in
(A) Zero
(B) Always 1
(C) n
(D) can't decide from given data.
i. If $d y(t) / d t+3 y(t)=x(t)$, the system function will be
(A) $1 /(\mathrm{S}+3)$
(B) $1 /(\mathrm{S}-3)$
(C) $\mathrm{S}+3$
(D) S-3
j. The ROC does not contain any
(A) other ROC
(B) unit circle
(C) zeros
(D) poles

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. If $x(n)=\{1,1,1,1,1 / 4,1 / 4\}$
(i) $\quad \stackrel{\uparrow}{\operatorname{Sketch} x(n) .}$
(ii) Sketch $\mathrm{x}(\mathrm{n}) \cdot \mathrm{u}(2-\mathrm{n})$
(iii) Sketch $\mathrm{x}(\mathrm{n}-1) \cdot \delta(\mathrm{n}-3)$.
b. Prove that
(i) $\delta(\mathrm{n})=\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-1)$.
(ii) $y(t)=x(2 t)$ is causal system.
(iii) $\mathrm{x}(\mathrm{t})=\mathrm{A} \mathrm{e}^{-\mathrm{at}} \mathrm{u}(\mathrm{t})$ is an energy signal.
c. Differentiate continuous-time and discrete-time systems.
Q. 3 a. For the signal
$x(n)=1+\sin (2 \pi / N) n+3 \cos (2 \pi / N) n+\cos \left(2 \pi n / N+90^{\circ}\right)$.
(i) Determine the Fourier series co-efficients for $\mathrm{N}=5$ for the above signal.
(ii) Plot real and imaginary parts of the Fourier series co-efficients.
(iv) Plot magnitude and phase of the same Fourier series co-efficients.
b. Plot impulse train $\delta(\mathrm{t})$ with period T. Determine its Fourier series representation. State its area of application(s).
Q. 4 a. If $\mathrm{G}(\mathrm{jw})$ is the Fourier transform of the signal $\mathrm{g}(\mathrm{t})=2 /\left(1+\mathrm{t}^{2}\right)$. Determine $\mathrm{G}(\mathrm{jw})$. Comments on the result obtained.
b. For the signal $x(n)=\cos \left(w_{0} n\right)$, determine and sketch its discrete time Fourier transforms. Assume $\mathrm{w}_{\mathrm{o}}=(2 \pi / 5)$.
Q. 5 a. First-order system's differential equation is described by $\tau d y(t) / d t+y(t)=$ $\mathrm{x}(\mathrm{t})$; where $\tau=$ time-constant of the system,
(i) Obtain frequency response
(ii) Obtain impulse response
(iii) Obtain step response of the system
(iv) If τ is made smaller, what will be its effect on time response of the system?
b. Define and explain interpolation. Enlist its various types. Discuss any one interpolation method in detail.
Q. 6 a. State and prove initial value theorem and final value theorem for

Z-transform. Obtain the initial and final value of $x(z)=2+3 z^{-1}+4 z^{-2}$.
b. Explain the following properties for Z- transform.
(i) time shifting
(ii) time reversal
(iii) time expansion
(iv) scaling
Q. 7 a. For an LTI system, the following data is given
(i) The system is causal
(ii) The system function is rational and has only two poles at $\mathrm{s}=-2$ and $\mathrm{s}=+4$.
(iii) If $\mathrm{x}(\mathrm{t})=1$, then $\mathrm{y}(\mathrm{t})=0$.
(iv) The value of the impulse response at $\mathrm{t}=0^{+}$is 4 .

Determine system function from the above data using Laplace transformation only.
b. Obtain the Laplace transform of
(i) $\mathrm{x}(\mathrm{t})=\mathrm{te}^{-\mathrm{at}} \mathrm{u}(\mathrm{t})$
(ii) $x(t)=\left[2 t e^{-t}-t e^{-t}+3 e^{-2 t}\right] u(t)$
Q. 8 a. If $\mathrm{X}(\mathrm{S})=1 /\{(\mathrm{s}+1)(\mathrm{s}+2)\}$ with $\operatorname{Re}\{\mathrm{s}\}>-1$; obtain inverse Laplace Transform. Also, sketch pole-zero plot clearly indicating ROC.
b. A causal LTI system described by the difference equation $y(n)+3 y(n-1)$
$=x(n)$ with system initially relaxed. Obtain $y(n)$ if $x(n)=\alpha u(n)$, where α is a given constant using unilateral Z-transformation.
Q. 9 a. Write short note on:-
(i) Cross-spectral density between input and output.
(ii) Cross-correlation between input and output.
b. If an amplitude X of a Gaussian signal $x(t)$ has a mean value of 2 and mean square value of 3. Determine and state its PDF.

