\qquad

AMIETE - ET/CS/IT (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH
PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of $\lim _{(x, y) \rightarrow(\infty, 2)} \frac{x y+4}{\left(x^{2}+2 y^{2}\right)}$ is
(A) 0
(B) 1
(C) limit does not exist
(D) -1
b. If $u=x^{y}$ then the value of $\frac{\partial u}{\partial x}$ is equal to
(A) 0
(B) $y x^{y-1}$
(C) $x y^{x-1}$
(D) $x^{y} \log (x)$
c. If $z=\sin ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then the value of $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is
(A) $\mathrm{z} / 2$
(B) 2 z
(C) $\tan (\mathrm{z}) / 2$
(D) $\sin (\mathrm{z}) / 2$
d. The value of integral $\int_{-1}^{1} \int_{0}^{2} \int_{x-z}^{x+z}(x+y+z) d x d y d z$ is equal to
(A) 1
(B) 0
(C) -1
(D) None of these
e. The differential equation of the coaxial circles of the system $x^{2}+y^{2}+2 a x+c^{2}=0$ Where c is a constant and a is a variable is given by
(A) $2 x y \frac{d y}{d x}=c^{2}-x^{2}+y^{2}$
(B) $x^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=y^{2}$
(C) $c^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=x^{2}$
(D) $\left(x^{2}+y^{2}\right)\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=c^{2}$

ROLL NO.

\qquad
f. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=0$ satisfying the initial conditions $\mathrm{y}(0)=1, \mathrm{y}(\pi / 4)=2$ is
(A) $y=2 \cos 2 x+\sin 2 x$
(B) $y=\cos 2 x+2 \sin 2 x$
(C) $y=\cos 2 x+\sin 2 x$
(D) $y=2 \cos 2 x+2 \sin 2 x$
g. If $A\left(\begin{array}{cc}0 & 1 \\ 2 & -1\end{array}\right)=\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)$, where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ the A is equal to
(A) $\left(\begin{array}{cc}2 & 0 \\ -1 / 2 & -1 / 2\end{array}\right)$
(B) $\left(\begin{array}{cc}0 & 1 \\ -1 / 2 & -1 / 2\end{array}\right)$
(C) $\left(\begin{array}{cc}2 & -1 \\ -1 / 2 & -1 / 2\end{array}\right)$
(D) $\left(\begin{array}{cc}2 & 1 \\ -1 / 2 & -1 / 2\end{array}\right)$
h. The matrix A is idempotent if
(A) $A^{2}+A=0$
(B) $A^{2}=A$
(C) $A^{2}-A=I$
(D) None of these
i. The value of $\int_{-1}^{1} P_{0}(x) d x$ is equal to
(A) 1
(B) 2
(C) -1
(D) 0
j. The value of the integral $J_{-2}(x)$ is equal to
(A) $-J_{2}(x)$
(B) $-J_{-2}(x)$
(C) $J_{2}(x)$
(D) $J_{-1}(x)$

Answer any FIVE Questions out of EIGHT Questions.

 Each Question carries 16 marks.Q. 2 a. For the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right. \text { show that }
$$

$$
\begin{equation*}
f_{x y}(0,0) \neq f_{y x}(0,0) \tag{8}
\end{equation*}
$$

b. Find the maxima and minima of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.

ROLL NO.

Q. 3 a. If $f(x, y)=\tan ^{-1}(y / x)$, find an approximate value of $\mathrm{f}(1.1,0.9)$ using the Taylor's series quadratic approximation.
b. Evaluate the integral $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}}\left(x^{2}+y^{2}\right) d x$ dy by changing to polar coordinates.
Q. 4 a. Find the solution of the differential equation $(2 x+y-3) d y=(x+2 y-3) d x$
b. Solve the differential equation $\sec x \sec ^{2} y \frac{d y}{d x}=e^{x}-\sec x \tan x \tan y$.
c. Show that the functions $1, \sin x, \cos x$ are linearly independent.
Q. 5 a. Using method of variation of parameters, solve $y^{\prime \prime}-2 y^{\prime}=e^{x} \sin x$.
b. Solve $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=2 x e^{3 x}+3 e^{x} \cos 2 x$.
Q. 6 a. If $A=\left[\begin{array}{ccc}2+i & 3 & -1+3 i \\ -5 & \mathrm{i} & 4-2 \mathrm{i}\end{array}\right]$, show that $A A^{*}$ is a Hermitian matrix, where A^{*} is the conjugate transpose of A .
b. Examine the following vectors for linear dependence and find the relation if it exists, $X_{1}=(1,2,4), X_{2}=(2,-1,3), X_{3}=(0,1,2), X_{4}=(-3,7,2)$.
Q. 7 a. Examine, whether the matrix A is diagonalizable. $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & 1 & 0\end{array}\right]$. If, so, obtain the matrix P such that $P^{-1} A P$ is a diagonal matrix.
b. Investigate the values of μ and λ so that the equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ has
(i) no solutions
(ii) a unique solution and
(iii) an infinite number of solutions.
Q. 8 a. Find the power series solution of the equation $y^{\prime \prime}+(x-1)^{2} y^{\prime}-4(x-1) y=0$, about the point $x_{0}=1$
b. Prove that $P_{n}^{\prime}(1)=\frac{1}{2} n(n+1)$.
Q. 9 a. Express $J_{5}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$.
b. Express $f(x)=4 x^{3}+6 x^{2}+7 x+2$ in terms of Legendre Polynomials.

