Code: AC09/AT09

Subject: NUMERICAL COMPUTING

AMIETE – CS/IT (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2 × 10)

a. Compute the middle value of the numbers a=4.568 and b=6.762 using the four digit arithmetic.

$(\mathbf{A}) \ 0.5660 \ \mathbf{x} \ 10^1$	(B) 0.5665 x 10 ¹
(C) 0.0566	(D) 0.6650

b. The iterative method $x_{k+1} = 2x_k - N^3 x_k^2$, where N is a positive number, is being used to evaluate a certain quantity. If the iteration converges, the method is used for finding

(A)
$$N^{3/2}$$
 (B) $\frac{1}{N^3}$

(C)
$$N^{1/3}$$
 (D) $N^{2/3}$

c. In bisection method, if the permissible error is \in , then the approximate number of iterations required may be determined from relation. [It is assumed that a root of f(x)=0 lies in the interval (a_0, b_0) and n denotes the number of iterations]

(A)	$\frac{b_0 - a_0}{2^n} \leq \in$	(B)	$\frac{b_0-a_0}{2^n}\!\geq\!\in$
(C)	$\frac{\mathbf{b}_0 - \mathbf{a}_0}{\mathbf{n}\log 2} \le \in$	(D)	$\frac{b_0 - a_0}{n \log 2} \ge \in$

- d. LU decomposition method requires.
 - (A) forward substitution
 - (B) backward substitution
 - (C) both forward and backward substitution

(D) none of these

e. Consider the following statements:

(i) the largest eigenvalue in modulus of a square matrix A cannot exceed the largest sum of the moduli of the elements along any row or column

AC09/AT09 / OCTOBER - 2012

1

AMIETE - CS/IT (OLD SCHEME)

Code: AC09/AT09

Subject: NUMERICAL COMPUTING

(ii) the eigenvalues of the matrix A are given by the diagonal elements when it has any one of the forms, diagonal, upper triangular or lower triangular

Which of the above statements are correct?

- (**A**) (i) only (**B**) (ii) only
- (C) (i) and (ii) both (D) none of the these
- f. Let $f(x) = e^{ax}$. Then, $\Delta^2 f(x)$, where Δ is forward difference operator, with step size h, is given by.
 - (A) $(e^{ah} 1)e^{ax}$ (B) $e^{ah} - 1$ (C) $(e^{ah} - 1)^2 e^{ax}$ (D) $e^{ax} - 1$
- g. The least squares linear polynomial approximation for the following data is:

	x -2	2 -1	0	1	2	
	f(x) 1:	5 1	1	3	19	
	(A) $-1.5 + 5.6$	δx				(B) $-1.5 + x$
	(C) $5.4 + x$					(D) $7.4 + x$
h.	If λ is an eige	en value	e of a	a Ma	ıtrix A	, then $\frac{1}{\lambda}$ is the eigen value of
	$(\mathbf{A}) \mathbf{A}^2$					$(\mathbf{B}) \mathbf{A}^{\mathrm{T}}$
	(C) A^{-1}					(D) None of the above
i.	. The order of Convergence of Newton-Raphson Method is				on-Raphson Method is	
	(A)1					(B) 2
	(C) 1.67					(D) 1.42
j.	Taylor series n	nethod	of o	order	1 is a	lso known as

(A)	Euler's method	(B) Milne's method
(C)	Runge-Kutta method	(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Given the following equation, $x-e^{-x}=0$, determine the initial approximations for finding the smallest positive root. Use these to find the root correct to three decimal places using Secant method. (8)

Code: AC09/AT09

Subject: NUMERICAL COMPUTING

- b. Find the iterative method based on Newton-Raphson method for finding N^{1/k}, where N is a positive real number. Apply the method to N=18, K=2 to obtain the results correct to two decimal places.
 (8)
- Q.3 a. Find the inverse of the matrix.

$$\begin{bmatrix} 2 & -1 & 2 \\ -1 & 1 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

by Cholesky method

- b. Set up the Gauss-Jacobi scheme in matrix form to solve the system of equations
 - $\begin{vmatrix} 4 & 0 & 2 \\ 0 & 5 & 2 \\ 5 & 4 & 10 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 4 \\ -3 \\ 2 \end{vmatrix}$

and obtain three iterates starting with initial vector $(0,0,0)^{T}$, hence find the rate of convergence of the method. (8)

Q.4 a. Transform the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$ to tridiagonal form using Givens

method. Using Sturm's sequence, obtain exact eigenvalues of matrix A (8)

b. Show that the matrix

 $\begin{bmatrix} 12 & 4 & -1 \\ 4 & 7 & 1 \\ -1 & 1 & 6 \end{bmatrix}$ is positive definite. (8)

Q.5 a. Using repeated Richardson extrapolation formula, given by

 $f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$, compute f''(0.3) from the following table of values:

X	0.1	0.2	0.3	0.4	0.5
f(x)	17.60519	17.68164	17.75128	17.81342	17.86742

b. Obtain an approximation using principle of least squares in the form of a polynomial of the degree 2 to the function $\frac{1}{(1+x^2)}$ in the range $-1 \le x \le 1$. (8)

Q.6 a. Using the data sin (0.1) = 0.09983 and sin (0.2) = 0.19867, find an approximate value of sin (0.15) by Lagrange interpolation. Obtain a bound on the truncation error. (8)

3

(8)

(8)

Code: AC09/AT09

Subject: NUMERICAL COMPUTING

b. Evaluate the integral $I = \int_{0}^{1} \frac{dx}{1+x}$ by subdividing the interval [0, 1] into two

equal parts and then applying the Gauss-Legendre three point formula. (8)

- Q.7 a. Compute the Integral $I = \int_{0}^{1} \frac{dx}{x^3 + 10}$, using Simpson's rule with the number of points 3,5 and 9. Improve the results using Romberg integration. (8)
 - b. Consider the four point formula

 $f'(x_2) = \frac{1}{6h} \left[-2f(x_1) - 3f(x_2) + 6f(x_3) - f(x_4) \right] + TE + RE$

Where $x_j = x_0 + jh$, j = 1,2,3,4 and TE, RE are respectively the truncation error and round off error.

- (i) Determine the form of TE and RE
- (ii) Obtain the optimum step length h satisfying the criterion |TE| = |RE|. (8)
- **Q.8** a. Given $\frac{dy}{dx} = \frac{1}{x+y}$, where y(0)=1, find y(0.5) and y(1.0), using Runge-Kutta fourth order method (take h=0.5). (8)
 - b. Given the initial value problem $u' = t^2 + u^2$, u(0) = 0, determine the first three non-zero terms in the Taylor series for u(t) and hence obtain the value for u(1). Also determine t when the error in u(t) obtained from the first two non-zero terms is to be less than 10^{-6} after rounding. (8)
- Q.9 a. Show that

(i)
$$\delta = \nabla (1 - \nabla)^{-\frac{1}{2}}$$
 (ii) $\mu = \left[1 + \frac{\delta^2}{4}\right]^{\frac{1}{2}}$ (6)

b. Determine an appropriate step size to use, in the construction of a table of $f(x) = (1+x)^6$ on [0,1]. The truncation error for linear interpolation is to be bounded by $5x10^{-5}$. (6)

c. The matrix
$$A = \begin{bmatrix} 1+S & -S \\ S & 1-S \end{bmatrix}$$
 is given. Calculate p and q such that $A^n = pA + qI$.
(4)

4