| <b>ROLL NO.</b> |  |
|-----------------|--|

## **AMIETE - CS/IT (OLD SCHEME)**

Time: 3 Hours OCTOBER 2012 Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated

| Q.1 | Choose the correct or the best alternative in the following: | $(2\times10)$ |
|-----|--------------------------------------------------------------|---------------|
|-----|--------------------------------------------------------------|---------------|

- a. The measurement of which one of the following will reveal the sign of charge carriers?
  - (A) Conductivity

- **(B)** Mobility
- (C) Hall Coefficient
- (**D**) Diffusion Constant
- b. The cascade amplifier is a multistage configuration of
  - (A) CC-CB

**(B)** CE-CB

(C) CB-CC

- (D) CE-CC
- c. The ideal op-amp has the following characteristics
  - (A)  $Ri=\infty$ ,  $Ai=\infty$ , Ro=0
- **(B)** Ri=0,  $A=\infty$ , Ro=0
- (C)  $Ri=\infty$ ,  $A=\infty$ ,  $Ro=\infty$
- **(D)** Ri=0,  $A=\infty$ ,  $Ro=\infty$
- d. Ripple frequency of the output waveform of a bridge rectifier when fed with a 50Hz sine wave is
  - (**A**) 100 Hz

**(B)** 25 Hz

(**C**) 50 Hz

- (**D**) None of these
- e. The sum S of A and B in a half adder can be implemented by using K NAND gates. The value of K is
  - **(A)** 3

**(B)** 4

**(C)** 5

(**D**) None of these

- f. The reason for using Gray Code in K-map is
  - (A) gray code is efficient than binary code
  - (B) gray code provides cell values that differ in only one bit in adjacent cell
  - (C) no other code is available
  - (**D**) Any other code can be used.
- g. The effective channel length of a MOSFET in Saturation decreases with increase in
  - (A) Gate Voltage

- (B) Drain Voltage
- (C) Source Voltage
- (D) Base Voltage
- h. Extremely low power dissipation and low cost per gate can be achieved in the following IC
  - (A) ECL

(B) CMOS

(C) TTL

- (D) MOS
- i. In which flipflop the output is transparent to input?
  - (A) JK FF

**(B)** T FF

(C) SR FF

- (**D**) D FF
- j. Which one of the following statement about RAM is not correct?
  - (A) RAM Stands for random access memory
  - **(B)** It is also called read/write memory
  - (C) When power supply is switched off, the information in RAM is usually lost
  - (**D**) The binary contents are entered or stored in the RAM chip during the Manufacturing

# Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

**Q.2** a. Explain the input and output characteristics of C B configuration.

**(8)** 

b. A JFET amplifier with stabilized biasing circuit shown in Fig.1 has following parameters:
 V = 2V J= 25 mA

(8)

$$V_P = -2V$$
,  $I_{DSS} = 5mA$ ,  $R_L = 910\Omega$ ,  $R_F = 2.29k\Omega$ ,  $R_1 = 12M\Omega$ ,  $R_2 = 8.75M\Omega$  and  $V_{DD} = 24V$ . Determine the value of drain current  $I_D$  at the operating point. Also verify that FET will operate in pinch-off region.



- Q.3 a. Derive the general expression for Input impedance, Current gain, Voltage gain and output impedance in terms of h parameter and the load resistance. (8)
  - b. For a BJT  $h_{ie} = 500\Omega$ ,  $h_{fe} = 100$ ,  $h_{re} = 10^{-4}$ ,  $h_{oe} = 4 \times 10^{-5}$  A/V,  $V_{CE} = 10$ V,  $I_{C} = 100$ mA and room temperature of  $27^{\circ}$ C. The BJT has  $f_{T} = 50$ MHz and  $C_{b'c} = 3$ pF. Calculate all the parameters of the hybrid  $\pi$  model of the BJT.
  - Q.4 a. Explain how LC tank circuit is used to generate AC oscillations in an electronic oscillator? (8)
    - b. Find an expression for the output  $V_0$  of the amplifier shown in Fig 2. Assume op-amp is ideal. What mathematical operation does this circuit perform? (8)



- Q.5 a. Explain the working of a full wave bridge rectifier. Explain what is a ripple factor? (8)
  - b. Explain 'Junction diode switching time' to justify diode reverse recovery time.
    Storage time and transition time.
    (8)
- Q.6 a. (i) Write minterms of  $A + \overline{B}C$ (ii) Write maxterms of (A+B)(B+C) (4+4)
  - b. Explain the operation of a decimal to BCD encoder. (8)
  - Q.7 a. Explain the operation of J-K flip-flop. (8)
    - b. Draw the circuit of a 3 bit synchronous counter and explain its working. (8)
  - Q.8 a. Explain the working of CMOS NAND gate and NOR gate (8)
    - b. Draw a TTL circuit with totem pole output and explain its working (8)

| ROLL | NO. |      |      |   |
|------|-----|------|------|---|
| ver  |     | <br> | <br> | , |

**Q.9** Write short note on any <u>TWO</u>:-

(8×2)

- (i) CCD
- (ii) Seven segment Display
- (iii) Dynamic MOS
- (iv) Bipolar memory cell.