ROLL NO.

Code: DE65

Subject: CONTROL ENGINEERING

DiplETE – ET (Current Scheme)

Time: 3 Hours

JUNE 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2×10)

- a. In Speed Control Systems, the device used for providing feedback is
 (A) Thermocouple
 (B) Synchro –transmitter
 - (C) Synchro –transformer (D) Tacho-generator
- b. The Closed loop control systems
 (A) Increases the accuracy
 (B) are unreliable
 (C) are easier to construct
 (D) are affected by noise

c. The Laplace Transform of unit step input is

(A)
$$\frac{1}{s^2}$$
 (B) $\frac{1}{s+1}$
(C) $\frac{1}{s}$ (D) $\frac{1}{(s+1)^2}$

- d. The system will reach its steady state response
 - (A) When t = 0
 - (**B**) When $t \rightarrow \infty$
 - (C) When $t \le 0$

(D) When the input changes from zero to one

e. The impulse response of h(t) = e^{-t} is
(A) decays to zero
(B) Exponentially increasing
(D) Oscillatory

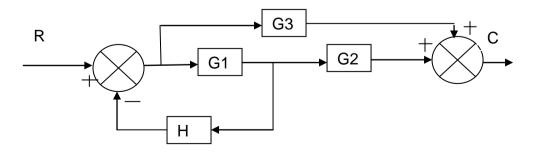
f. The transfer function of a system is given as $G(s) = \frac{200}{s^2 + 20s + 200}$ the System

- is (A) An Over damped System
- (C) A critically damped System
- (**B**) An under-damped system
- (D) An Undamped system

1

ROLL NO.

Subject: CONTROL ENGINEERING

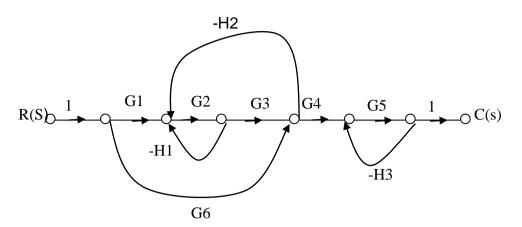

g. Time taken by the response to reach and stay within 2% or 5% of the final value is known as			
(A) Peak Time	(B) Rise Time		
(C) Delay Time	(D) Settling Time		
 h. When unit step input is given to type 0 system what is the steady state error? (A) Zero (B) constant 			
(C) Infinite	(D) Indeterminate		
i. Usually the polar plot is drawn for			
(A) Nonlinear systems only	(B) Feedback control systems only		
(C) Open loop system	(D) Unstable system		
j. In most cases for the stability of Control system the gain margin should be			
(A) Zero	(B) Less than zero		
(C) Greater than one	(D) a complex number		

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a. What is open loop and closed loop control system? Explain the terminology of the closed loop with help of block diagram.	(10)	
	b. Explain the characteristics of feedback control system.	(6)	
Q.3	a. Explain the steady state and transient responses.	(4)	
	b. What are the various standard Test Signals?	(6)	
	c. Find out the inverse Laplace transform of $\frac{4}{s(s+1)(s+4)}$	(6)	
Q.4	a. Using Routh criterion, determine the stability of the system represented by the		

characteristics equation, $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$. (8)

b. Reduce the following block diagram and find the overall transfer function. (8)


ROLL NO.

Code: DE65

Subject: CONTROL ENGINEERING

Q.5 a. Explain signal flow graph algebra with suitable examples.

b. Find the overall transfer function C(s)/R(s).

Q.6 a. For the Unity feedback control system the open loop transfer function $G(s) = \frac{10(s+2)}{s^2(s+1)}$ Find the position, velocity and acceleration error constants. (8)

b. Classify and explain the continuous feedback system by type. (8)

Q.7 a. Explain the Properties of Mapping P(s) or P(z). (7)

- b. Write short notes on Nyquist Stability Criterion. (4)
- c. Write short notes on Relative Stability. (5)
- **Q.8.** a. A Unity feedback control has an open loop transfer function $G(s) = \frac{K}{s(s^2 + 4s + 13)}.$ Sketch its root locus. (12)

b. Find the breakaway point of
$$G(s) = \frac{K}{s(s+2)(s+4)}$$
. (4)

Q.9 a. Define Corner frequency, Gain Cross Over frequency and Phase cross over frequency.(6)

b. Plot the bode diagram for the transfer function
$$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$$
. (10)

(6) (10)