ROLL NO. _

Code: DE58/DC58/DE108/DC108

Subject: LOGIC DESIGN

DiplETE – ET/CS (Current & New Scheme)

Time: 3 Hours

JUNE 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following: a. Binary equivalent of $(83)_{10}$ is		(2×10)
	(A) 1010011	(B) 1001010	
	(C) 10000010	(D) 10000101	
	b. Decimal equivalent of $(356)_{16}$ is		
	(A) 856	(B) 854	
	(C) 858	(D) 855	
	c. How many nibbles are in a byte?		
	(A) 1	(B) 2	
	(C) 3	(D) 4	
	d. How many table entries are needed	for a four input circuit?	
	(A) 16	(B) 8	
	(C) 32	(D) 64	
	e. X+XY=		
	(A) Y	(B) XY	
	(C) X	(D) X+Y	
	f. What will be the status of Q & \overline{Q} a	fter an FF has been reset (cleared)?	
	(A) $Q=0, \bar{Q} = 1$	$(\mathbf{B}) \mathbf{Q} = 1, \overline{\mathbf{Q}} = 0$	
	(C) $Q=0, \overline{Q} = X$	(D) $Q=1, \overline{Q} = X$	
	g. Which LED segments will be ON f	or a decoder/driver input of 1001?	
	(A) a,b,d,f,g	(B) a,b,c,f,g	
	(C) a,c,e,f,g	(D) b,c,d,e,g	
	h. How many gates are needed to deco	ode a six-bit counter fully?	
	(A) 64	(B) 32	
	(C) 16	(D) 128	

ROLL NO. _

Code: DE58/DC58/DE108/DC108

Subject: LOGIC DESIGN

i.	2K= words. (A) 1024 (C) 16	(B) 2048 (D) 128
j.	$(58)_{16} + (4B)_{16} = (___)_{16}$ (A) A2 (C) 90	(B) 9F (D) A3

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Draw Block diagram of digital computer and explain each block in detail.	(8)
	b.	Convert $(423)_{10}$ to hexadecimal.	(4)
	c.	Convert (B2F) ₁₆ to decimal.	(4)
Q.3	a.	Draw logic circuit for given Boolean expression. $Y = AC + B\bar{C} + \bar{A}B$	(5)
	b.	Simplify $Z = (\overline{A} + B).(A+B)$ using Boolean theorems.	(5)
	c.	Use K-map to simplify $Y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$	(6)
Q.4	a.	Draw NOR gate latch with function table.	(4)
	b.	Explain clocked S-R flip flop with function table and waveforms.	(8)
	C	Determine the Q output for a negative-edge-triggered L-K flip-flop for	• the

c. Determine the Q output for a negative-edge-triggered J-K flip-flop for the input waveforms shown in figure. Assume that tH = 0 and that Q = 0 initially.

ROLL NO. _____

Code: DE58/DC58/DE108/DC108

Q.5	a.	Add the following pairs of binary numbers (i) 011 + 110 (ii) 1001 + 1111 (iii) 11.011 + 10.110	(6)
	b.	Perform BCD addition (59 + 38)	(4)
	c.	Draw full-adder circuit with truth table.	(6)
Q.6	a.	Explain four bit Ripple counter with logic diagram and timing waveforms.	(8)
	b.	Draw MOD-8 Synchronous up/down counter with timing waveforms.	(8)
Q.7	a.	Draw 3 to 8 decoder circuit diagram with truth table and explain its workin	g. (8)
	b.	Draw 4 input Multiplexer using SOP logic and explain its working.	(8)
Q.8	a.	Draw and explain logic diagram for parallel In/parallel Out register with logic symbol.	n its (8)
	b.	Explain four bit ring counter in detail.	(8)
Q.9	a.	Draw Internal organization of a (64 * 4) RAM and explain.	(8)
	b.	Draw cell arrangement in a 16K * 1 DRAM and explain.	(8)