ROLL NO	
---------	--

Code: DE54/DE104 Subject: ENGINEERING MATERIALS

DiplETE - ET (Current & New Scheme)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2x10)

- a. Fermi Level is
 - (A) An average value of all available energy levels
 - (B) The highest occupied energy level at absolute zero of temperature
 - (C) An energy level at the top of a valence band
 - (**D**) The largest available energy level
- b. Polarisation in a dielectric is
 - (A) Free charge per unit volume of the dielectric
 - (B) Bound charge per unit volume of the dielectric
 - (C) Bound charge per unit area of the dielectric
 - (**D**) Free charge per unit area of the dielectric
- c. If dielectric losses are zero then
 - (A) Current leads the voltage by 90°
 - **(B)** Current lags the voltage by 90°
 - (C) Displacement current is in phase with applied voltage
 - (**D**) Conduction current is in quadrature with applied voltage
- d. The permeability of iron can be increased by
 - (A) Alloying with cobalt
- (**B**) Purifying it
- (C) Introducing carbon in it
- (**D**) Alloying with nickel
- e. Which statement is correct?
 - (A) An insulator has a wide forbidden energy gap
 - **(B)** In an insulator the valence band is completely filled with electrons and conduction band is completely empty
 - (C) The upper band in an insulator contributes to electrical conductivity since no electrons are present to act as carriers
 - **(D)** It is impossible for any electron in the filled valence band of an insulator to be accelerated by an electric field

ROLL NO.	

Code: DE54/DE104 Subject: ENGINEERING MATERIALS

	f.	Thermistors are (A) Linear resistances	(B) Non-linear resistances			
		(C) Linear inductances	(D) Non-linear inductances			
	g.	The dielectric in electrolytic capacit				
		(A) Aluminium oxide	(B) Aluminium hydroxide			
		(C) Nitrogen oxide	(D) Nitrogen dioxide			
	h.	Which statement is correct for FET				
		(A) These cannot be directly connected.	<u> </u>			
		(B) Their performance is affected by ambient temperature changes(C) These have low input impedance				
		(D) These have extremely high input		Ω		
	i.	The amount of energy possessed by direction of motion Cartesian is	a monatomic gas molecule for each			
		(A) (3/2) KT	(B) (1/2)KT			
		$(\mathbf{C}) \ 2\mathbf{K}\mathbf{T}^2$	(D) (1/3)KT			
	j.	The Hall voltage across an impurity by increasing the	semiconductor crystal can be increa	ised		
		(A) current flowing through crystal	(B) thickness of crystal			
		(C) width of crystal	(D) temperature			
		Answer any FIVE Questions Each question car				
Q.2	a.	Each question car The resistivity of pure copper is 1. atomic percent nickel has a resist	ries 16 marks. 56 $\mu\Omega$ -cm an alloy of copper contivity of 2.81 $\mu\Omega$ -cm. An alloy of as a resistivity of 1.98 $\mu\Omega$ -cm. What	copper at is the percen		
Q.2		The resistivity of pure copper is 1 atomic percent nickel has a resist containing 3 atomic percent silver has resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing 2 atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity of an alloy containing atomic percent silver has a resistivity	ries 16 marks. 56 $\mu\Omega$ -cm an alloy of copper contivity of 2.81 $\mu\Omega$ -cm. An alloy of as a resistivity of 1.98 $\mu\Omega$ -cm. What atomic percent nickel and 2 atomic	copper at is the percen		
Q.2	b.	The resistivity of pure copper is 1 atomic percent nickel has a resist containing 3 atomic percent silver has resistivity of an alloy containing 2 silver?	ries 16 marks. 56 $\mu\Omega$ -cm an alloy of copper contivity of 2.81 $\mu\Omega$ -cm. An alloy of as a resistivity of 1.98 $\mu\Omega$ -cm. What atomic percent nickel and 2 atomic electron.	copper at is the percen (6)		
Q.2 Q.3	b.	The resistivity of pure copper is 1. atomic percent nickel has a resist containing 3 atomic percent silver has resistivity of an alloy containing 2 silver? Derive the equation of motion of an	ries 16 marks. 56 $\mu\Omega$ -cm an alloy of copper contivity of 2.81 $\mu\Omega$ -cm. An alloy of as a resistivity of 1.98 $\mu\Omega$ -cm. Whatomic percent nickel and 2 atomic electron. The electrical conductivity of metals. The unit volume is kept constant the die	copperat is the percen (6) (6) (4) lectric		
	b. c. a.	The resistivity of pure copper is 1. atomic percent nickel has a resist containing 3 atomic percent silver has resistivity of an alloy containing 2 silver? Derive the equation of motion of an Explain the effect of temperature on Explain that if number of atoms per constant of monoatomic gases is	ries 16 marks. $56 \mu\Omega$ -cm an alloy of copper contivity of 2.81 $\mu\Omega$ -cm. An alloy of has a resistivity of 1.98 $\mu\Omega$ -cm. What atomic percent nickel and 2 atomic electron. The electrical conductivity of metals. Unit volume is kept constant the die independent of temperature for	copperat is the percent (6) (6) (4) lectric normal		
	b. c. a.	Each question car The resistivity of pure copper is 1. atomic percent nickel has a resist containing 3 atomic percent silver resistivity of an alloy containing 2 silver? Derive the equation of motion of an Explain the effect of temperature on Explain that if number of atoms per constant of monoatomic gases is operating temperatures.	ries 16 marks. 56 μΩ-cm an alloy of copper contivity of 2.81 μΩ-cm. An alloy of has a resistivity of 1.98 μΩ-cm. What atomic percent nickel and 2 atomic electron. The electrical conductivity of metals. The electrical conductivity of metals independent of temperature for on.	copperat is the percent (6) (6) (4) lectric normat (8) (8)		

ROLL NO.	

Code: DE54/DE104

Subject: ENGINEERING MATERIALS

	c.	What is piezoelectricity? Explain the phenomenon of piezoelectricity. Nany two materials that exhibit piezoelectric properties.	(6)
Q.5	a.	Briefly explain the classification of magnetic materials.	(6)
	b.	What is magnetostriction? Draw curves showing magnetostriction coeff for iron, nickel and cobalt in three directions of single crystals.	icient λ (6)
	c.	Explain factors affecting permeability and hysteresis loss.	(4)
Q.6	a.	With the help of suitable diagrams explain the energy bands in solids.	(8)
	b.	Four microgram of antimony are thoroughly mixed in molten form with gms of pure germanium and antimony atoms substitute for germanium a uniformly throughout the solid material. Find: (i) The density of antimony atoms (ii) The density of donated electrons (iii) The conductivity if electron mobility is $3600 \text{cm}^2/\text{volts-sec}$ for the carriers (iv) The total resistance of a bar of such n-type material 2 cm long, 0.01 0.012 cm in cross-section. Given density of Ge = 5.46 gm/cm ³ . Atomic weight of Sb = 121.76	toms (8)
Q.7	a.	Explain the tunnelling effect of tunnel diode.	(8)
	b.	Write short notes on the following: (i) Thermistors (ii) Varistors	(8)
Q.8	a.	With the help of diagrams explain the various types of carbon-compositivesistors.	ion (6)
	b.	A rolled paper capacitor of value $0.04~\mu F$ is to be constructed using two of aluminium of width 4 cm and wax impregnated paper of thickness $0.04~\mu F$ and relative permittivity 3. What length of foil strip will be necessary?	
	c.	What are the various functions of relay? Explain briefly.	(6)
Q.9	a.	What are the different techniques of fabrication of junction transistors? Explain each of them with the help of diagrams where ever necessary.	(8)
	b.	Explain the transfer characteristics of JFET. Also write its merit and der	merits. (8)