Code: DE107 **Subject: NETWORKS AND TRANSMISSION LINES**

Diplete - ET (New Scheme)

Time: 3 Hours

JUNE 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to O.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct answer or best alternative in the following 0.1

 (2×10)

- Where is the ROC defined or specified for the signals containing causal as well as anti-causal terms?
 - (A) Greater than the largest pole
- **(B)** Less than the smallest pole
- (C) Between two poles
- (D) Cannot be defined
- b. Which result is generated/obtained by the addition of a step to a ramp function?
 - (A) Step Function shifted by an amount equal to ramp
 - (B) Step function of zero slope
 - (C) Ramp function of zero slope
 - (D) Ramp Function shifted by an amount equal to step
- c. $L[f'(t)]_{is:}$

(A)
$$SL[f''(t)-f(0)]$$

(B)
$$F(s)$$

(C)
$$SL[f(t)]$$

(D)
$$F(s+a)$$

- d. What should be the value of Laplace transform for the time-domain signal equation $e^{-at}\cos \omega t.u(t)$?
 - (A) a1 /(s + a) with ROC $\sigma >$ a
 - (B) $\omega / \{(s+a)^2 + \omega^2\}$ with ROC $\sigma > -a$ (C) $A\omega / (s^2 + \omega^2)$ with ROC $\sigma > 0$

(D)
$$s + a / \{(s + a)^2 + \omega^2\}$$
 with ROC $\sigma > -a$

- e. For high efficiency of transfer of power, internal resistance of the source should be
 - (A) Inversely proportional
- (B) less than the load resistance
- (C) more than the load resistance
- (**D**) equal to the load resistance
- f. Which operation is likely to get executed or performed by Millman's theorem in terms of converting the voltage or current sources into a single equivalent voltage or current source?
 - (A) Subtraction

(B) Differentiation

(C) Combination

(D) Integration

Code: DE107 Subject: NETWORKS AND TRANSMISSION LINES

- g. In a series RLC circuit that is operating above the resonant frequency, the current
 - (A) is zero

- **(B)** is in phase with the applied voltage
- **(C)** lags the applied voltage
- (**D**) leads the applied voltage
- h. A certain series resonant circuit has a bandwidth of 2 kHz. If the existing coil is replaced with one having a higher value of Q, the bandwidth will
 - (A) increase

(B) be less selective

(C) decrease

- (**D**) remain the same
- i. What is the meaning of the term velocity factor of a transmission line?
 - (A) The velocity of the wave on the transmission line multiplied by the velocity of the wave of light in vacuum.
 - (B) The ratio of the characteristic impedance of the line to the terminating impedance
 - (C) The index of shielding for coaxial cable
 - **(D)** The velocity of the waves on the transmission line divided by the velocity of light in a vacuum
- j. What is the input impedance of a shorted lossless line of length wavelength/4?
 - $(\mathbf{A}) \mathbf{Z}_0$

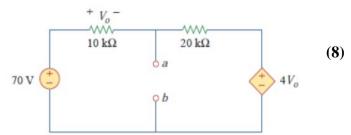
(B) infinity

(C) 0

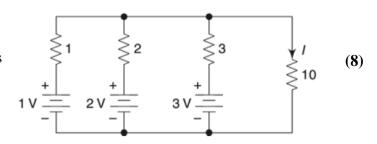
(D) complex

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Find the Laplace transform of


(8)

$$f(t) = \begin{cases} t^2 & 0 \le t \le 1\\ \sin 2t, & 1 < t < \pi, \\ \cos t, & t > \pi \end{cases}$$

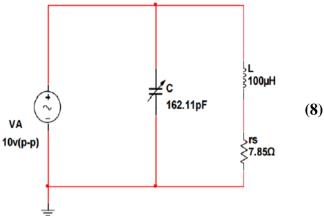

b. Find the Laplace transform of $t*cos(\omega t)$

(8)

Q.3 a. Find the Thevenin Equivalent Voltage at terminals a-b of the circuit

b. Find the Load current using Millman's theorem. All resistance values are in ohms

(10)


(8)

Code: DE107 **Subject: NETWORKS AND TRANSMISSION LINES**

- **Q.4** The bandwidth of a series resonant circuit is 400 Hz.
 - (i) If the resonant frequency is 4000 Hz, what is the value of O?
 - (ii) If R is 10 ohm then, what is the value of X at resonance?
 - (iii) Find the inductance L and capacitance C of the circuit.

(8)

b. Find the value of Reonance frequency, Inductive reactance, Capacitive reactance, Total impedance of the circuit, Total current supplied by voltage source, Q factor, and band width of the given ciruit.

- **Q.5** a. A transmission line operating at 300 MHz has $Z_0 = 60$ ohm, $\alpha = 0.02$ Np/m, $\beta = 0.6$ rad/m Find the line parameters R, L, G, and C (8)
 - b. How does frequency distortion occur in a line? **(4)**
 - Define the following (i) Reflection Loss (ii) Reflection Coefficient **(4)**
- a. A certain transmission line operating at $\omega = 10^6$ rad /s has $\alpha = 8$ dB/m, $\beta = 1$ rad/m **Q.6** and $Z_0 = 60 + j40$ ohm and is 2 m long. If the line is calculated to a source of $10 \angle 0^{\circ} \text{ V}$, $Z_g = 40$ ohm and terminated by a load of 20 + j50 ohm. Determine (i) The input impedance
 - (ii) The sending end current
 - (iii) The current at the middle of the line

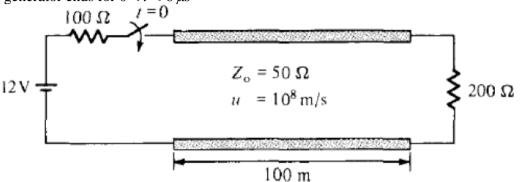
a. Describe various characteristics of filters.

b. A single phase transmission line has two parallel conductors 3m apart, the radius of each conductor being 1 cm. Calculate the loop inductance per km length of the

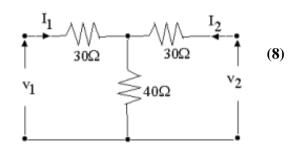
line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100. ($\mu_r = 1$)

- **(6)**
 - What are balance and unbalanced attenuators? (8)
- **Q.8** Antenna with impedance 40 + j30ohm is to be matched to a 100ohms lossless line with a Shorted stub. Determine
 - (i) The required stub admittance
 - (ii) The distance between the stub and the antenna
 - (iii) The stub length (10)

Q.7


(6)

(8)


Code: DE107

Subject: NETWORKS AND TRANSMISSION LINES


b. For the given transmission line calculate and sketch the voltage at the load and generator ends for $0 < t < 6 \,\mu s$

Q.9 a. Find the z-and ABCD-parameters of given network and also prove the property of symmetry of the network

b. Find the Y parameter of the given network

