ROLL NO.

Code: DC57/DC107

Subject: COMPUTER ORGANIZATION

DiplETE – CS (Current & New Scheme)

Time: 3 Hours

JUNE 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Cl a.	which of the following is lowest in(A) Cache memory(C) Registers		(2×10)
	b.	The addressing mode used in an ins (A) Absolute (C) index	 struction of the form ADD X Y, is (B) indirect (D) None of these 	
	c.	Von Neumann architecture is (A) SISD (C) MIMD	(B) SIMD (D) MISD	
	d.	Cache memory acts between (A) CPU and RAM (C) CPU and Hard	(B) RAM and ROM(D) None of these	
	e.	If memory access takes 20 ns with (cache uses a 10 ns memory) is (A) 93% (C) 88%	 (a) 90% (b) 87%)
	f.	Generally Dynamic RAM is used a (A) Consumes less power (C) has lower cell density	 s main memory in a computer system as i (B) has higher speed (D) needs refreshing circuitry 	t
	g.	 What is the content of Stack Pointer (SP)? (A) Address of the current instruction (B) Address of the next instruction (C) Address of the top element of the stack (D) Size of the stack. 		
	h.	A group of bits that tell the comput (A) Instruction code (C) Accumulator	er to perform a specific operation is know (B) Micro-operation (D) Register	vn as

Code: DC57/DC107

Subject: COMPUTER ORGANIZATION

i.	Floating point representation i	s used to store
	(A) Boolean values	(B) whole

(C) real integers

(B) whole numbers(D) integers

- j. A page fault
 - (A) Occurs when there is an error in a specific page.
 - (B) Occurs when a program accesses a page of main memory.
 - (C) Occurs when a program accesses a page not currently in main memory.
 - (D) Occurs when a program accesses a page belonging to another program.

Answer any FIVE Questions out of EIGHT Questions.			
Each question carries 16 marks			

Q.2	a.	Explain basic operational concepts between the processor and the memory.	
	b.	Write a note on byte addressability, big-endian and little-endian.	(8)
Q.3	a.	What is an addressing mode? Explain any four types of addressing modes.	(8)
	b.	Write short notes on stack.	(4)
	c.	Explain how to encode the instructions into 32 bits words.	(4)
Q.4	a. b.	plain the following: Interrupt hardware Centralized arbitration DMA	(5) (5) (6)
Q.5	a.	Explain in detail the input interface circuit.	(8)
	b.	Explain two types of SCSI controller.	(8)
Q.6	a.	Explain associative mapping cache.	(8)
	b.	What do you mean by memory interleaving? Explain.	(4)
	c.	Explain memory management by segmentation.	(4)
Q.7	a.	Explain the concepts of magnetic hard disk and optical disk.	(8)
	b.	Write short note on design of fast adders.	(8)
Q.8	a.	Explain IEEE standard for floating-point numbers representation.	(8)
	b.	Differentiate between restoring and non restoring division.	(8)
Q.9	a.	Explain complete execution instruction cycle.	(8)
	b.	Explain hard wired control unit.	(8)