ROLL NO.	

Code: CT12 Subject: COMPUTER ARCHITECTURE

ALCCS

Time: 3 Hours

JUNE 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- Q.1 a. State how different policies of writing into cache are implemented.
 - b. What do you understand by the term Computer organization, design and architecture?
 - c. What is the stack memory and what is the roll of stack in subroutine?
 - d. How do you explain the computer system from the following different views?
 - (i) Programmer's view
 - (ii) Computer architect's view
 - e. Apply arithmetic shift right and arithmetic shift left operation on the data (10110011)₂ and give your comment.
 - f. What is Burst mode DMA transfer?
 - g. Explain priority interrupt. Mention the role of polling in priority interrupt. (4×7)
- Q.2 a. Explain the metrics used in the performance of a computer. (9)
 - b. What is the philosophy of RISC based machine? How is it diffeent from a CISC Based machine? Discuss briefly. (9)
- Q.3 a. With neat flow chart explain the working of First Pass and Second Pass of assembler. (9)
 - b. How the performance of a system is measured? Discuss different techniques for improving system performance. (9)
- Q.4 a. The page-address generated by a cache-main memory scheme uses demand paging and has a cache capacity of four pages. Initially the cache was having the pages 1, 2, 3, 4 in it. Which of the page-replacement policies FIFO / LRU is more suitable in this case? Justify by showing the process.

ROLL NO.	

Code: CT12

Subject: COMPUTER ARCHITECTURE

- b. Explain the IEEE-754 single precision floating point representation and its format. Represent -1.5_{10} in single precision IEEE-754 floating-point representation. (9)
- Q.5 a. What is the difference between hardwired and micro-programmed control unit?

 Design a hardware control unit for a CPU capable of executing following instructions:

 (2+7)

<u>Instruction</u>	Instruction Code	<u>Operation</u>
ADD ADD	00 AAAAAA	$\overrightarrow{AC} \leftarrow \overrightarrow{AC} + M[\overrightarrow{AAAAAA}] + M[\overrightarrow{AAAAAA+1}]$
INC OR	01 AAAAAA	$AC \leftarrow (AC+1)V M[AAAAAA]$
EX-OR SKIP	1X AAAAAA	$AC \leftarrow AC \oplus M[AAAAAA], PC \leftarrow PC+1$

- b. Design an Associative Memory of m word, n cells per word. Derive the match logic for each word stored in the memory. Draw the internal organization of a typical cell of Associative Memory.
 (9)
- **Q.6** a. A digital computer has a memory unit of 64K x 16 and a cache memory of 1K word. The cache uses direct mapping with a block size of four words.
 - (i) How many bits are there in the tag, index, block and word field of the address format?
 - (ii) How many bits are there in each word of cache, and how are they divided in to functions?
 - (iii) How many blocks can the cache accommodate? (9)
 - b. Explain superscalar, super pipelined and VLIW architecture. (9)
- Q.7 a. Design a look ahead carry adder and state its advantages. (9)
 - b. Explain the following: (3×3)
 - (i) Pipeline processing
 - (ii) Vector processing
 - (iii) Array processors