ROLL NO.

Code: AE72/AE120 Subject: MICROWAVE THEORY AND TECHNIQUES

AMIETE - ET (Current & New Scheme)

Time: 3 Hours

JUNE 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. In Cavity Magnetron, strapping is used to
 - (A) Prevent mode jumping
 - (B) Prevent cathode back heating
 - (C) Ensure bunching
 - (D) Improve the phase focussing effect
- b. The Cross Field Amplifier (CFA) is a
 (A) Linear Amplifier
 (B) Parametric Amplifier
 (C) Non linear Amplifier
 (D) Saturated Amplifier
- c. A transmission line is called a flat line when its Standing Wave Ratio (SWR) is
 (A) 0
 (B) 1
 (C) infinity
 (D) minimum
- d. Which of these is not a type of Lithography technology?
 (A) Electron beam Lithography
 (B) Conducting beam Lithography
 (D) X-ray Lithography
- e. The standing wave ratio of a pure travelling wave is
 (A) Unity
 (B) Infinite
 (C) λ/2
 (D) λ
- f. The factors reducing efficiency of IMPATT diode are
 (A) Space charge effect & Reverse saturation current effect
 (B) High frequency skin effect & Ionization saturation effect
 (C) Both (A) & (B)
 (D) None of these

ROLL NO.

Code: AE72/AE120 Subject: MICROWAVE THEORY AND TECHNIQUES

If X band pulsed cylindrical	magnetron has magnetic flux density
$B_o = 0.336 \text{ wb/mt}^2$ its cyclotron angular frequency is	
(A) $\omega_{c} = e/mB_{o} = 5.91 \times 10^{10} \text{ rad}$	(B) $\omega_{\rm c} = \frac{{\rm em}}{{\rm B}_{\rm o}} = 11 \times 10^{10} {\rm rad}$
(C) $\omega_c = emB_o = 5 \times 10^5 rad$	(D) $\omega_{\rm c} = \frac{{\rm mB}_{\rm o}}{{\rm e}} = 6 \times 10^5 {\rm rad}$
h. Which one of the following modes has the characteristic of attenuation becoming less as the frequency is increased and is attractive at microwave frequencies for circular cylindrical waveguides?	
(A) TE_{11} mode	(B) TM_{01} mode
(C) TE_{01} mode	(D) higher order mode
i. The path length between ports 1 and 2 for the two waves in a hybrid ring is:	
(A) 1	(B) 3λ/4
(C) $\lambda/2$	(D) λ/4
A certain transmission line has a ch terminated in a load impedance of (A) 0.8+j40 (C) 0.9+j60	maracteristic impedance of $75 + j0.01 \Omega$ and is $70 + j50 \Omega$. The reflection coefficient is (B) 0.6+j50 (D) 0.08+j0.32
	If X band pulsed cylindrical $B_o = 0.336 \text{ wb/mt}^2$ its cyclotron an (A) $\omega_c = e_m B_o = 5.91 \times 10^{10} \text{ rad}$ (C) $\omega_c = \text{emB}_o = 5 \times 10^5 \text{ rad}$ Which one of the following modes less as the frequency is increased circular cylindrical waveguides? (A) TE ₁₁ mode (C) TE ₀₁ mode The path length between ports 1 an (A) 1 (C) $\lambda/2$ A certain transmission line has a ch terminated in a load impedance of 1 (A) 0.8+j40 (C) 0.9+j60

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Draw the profile of SWR versus reflection coefficient. A transmission line has a characteristic impedance of 50 + j 0.01 Ω and is terminated in a load line impedance of 73-j42.5 Ω. Calculate: (i) The reflection coefficient (ii) the standing wave ratio. (8)
 - b. Write the characteristics of smith chart and describe the steps involved in determination of normalized impedance using smith chart. (8)
- Q.3a. An air filled rectangular waveguide has dimensions of a = 6 cm and b = 4 cm.
The signal frequency is 3 GHz. Compute the following for the TE10 mode; (8)
(i) Cut off frequency
(ii) Phase velocity(ii) Wavelength in the waveguide
(iv) Group velocity
 - b. Starting from Maxwell's equations, derive wave equation for rectangular wave guide. (8)
- Q.4 a. Explain the Waveguide Corners, Bends and Twists in waveguide components.

(8)

ROLL NO.

Code: AE72/AE120 Subject: MICROWAVE THEORY AND TECHNIQUES

b. A signal of power 32 mW is fed into one of the collinear ports of a lossless H-Plane Tee. Determine the powers in the remaining ports when other ports are terminated by means of matched loads. (8) a. An n-type GaAs Gunn diode has the following parameters: 0.5 (6) $v_d = 2.5 \times 10^5 \text{ m/s}; \ |\mu_n| = 0.015 \text{ m}^2/\text{V.s}; \ \varepsilon_r = 13.1$ Determine the criterion for classifying the modes of operation. b. Explain the principle of operation of a tunnel diode. Draw its I-V characteristics. (10)0.6 a. A Reflex klystron operates under the following conditions: $V_0 = 600$ volts, $\alpha = 1$ mm, $R_{sh} = 15 \text{ K}\Omega$, $e_m = 1.759 \times 10^{11}$, $f_r = 9 \text{ GHz}$ The tube is operating at $f_v f_r$ at the peak of the n = 2 mode or 1 $\frac{3}{4}$ mode. The transit time through the gap and beam loading can be neglected. Find the value of repeller voltage V_r . (8) b. Write the schematic diagram of two cavity klystron amplifier and explain the velocity modulation process. (8) **Q.7** a. Explain the principle of operation Forward Wave Cross-Field Amplifier. (8) b. An Amplitron has the following operating parameters: Anode voltage $V_o = 15kV$ Anode current $I_0 = 3A$ Magnetic flux density $B_o = 0.2 \text{ wb/m}^2$ Operating frequency f = 8GHz Characteristic impedance $Z_0 = 50\Omega$ Determine: (i) The dc electron- beam velocity (ii) The electron- beam phase constant (iii) The cyclotron angular frequency (8) a. Derive expression for Quality Factor'O' of Micro-Strip Lines and show that it is 0.8 approximately the reciprocal of the dielectric loss tangent θ . (10)b. Explain ohmic losses in microstrip lines. (6) Q.9 a. List the various techniques by which monolithic microwave integrated circuits can be fabricated. Explain lithography. (10)b. Describe a thin film planar resistor and express the resistance in terms of its parameters. (6)