ROLL NO. _

Code: AE67/AE118

Subject: DIGITAL COMMUNICATIONS

AMIETE - ET (Current & New Scheme)

Time: 3 Hours

June - 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Ch	loose the correct or the best alterna	ative in the following:	(2×10)
	a.	A bandpass signal has the spectral r range of sampling frequency is (A) 40 kHz to 164 kHz (C) 10 kHz to 41 kHz	 ange of 20 kHz to 82 kHz. The acceptable (B) 40 Hz to 164 Hz (D) 10 Hz to 41 Hz 	9
	b.	The data rate required to transmit sp PCM channel with 8-bit accuracy is (A) 57.6 Mbps (C) 57.6 kbps	 beech whose band is limited to 3.6 kHz (B) 5.76 Mbps (D) 5.76 kbps 	
	c.	The entropy of a message source ge 0.25 and 0.25 is (A) 1 bit/message (C) 1.75 bits/message	 (B) 1.5 bits/message (D) 2 bits/message 	5,
	d.	Mutual information is symmetric ar (A) $I(X:Y) = I(Y:X)$ (C) $H(X;Y) = H(Y;X)$	ad represented as (B) $I(X Y) = I(Y X)$ (D) $H(X Y) = H(Y X)$	
	e.	The distortions caused by the use of bearning signal is referred as (A) Channel noise (C) Slope overload noise	F PAM to transmit an analog information-(B) Aperture effect(D) Granular noise	
	f.	The SNR of a PCM system having (A) 5.28 dB (C) 0.528 dB	 2⁸ number of quantization levels is (B) 52.8 dB (D) 528 dB 	
	g.	To avoid slope overload noise, the operator $(\mathbf{A}) \frac{Ts}{\Delta} \ge \max \left \frac{dm(t)}{dt} \right $ (C) $\frac{\Delta}{Ts} \ge \max \left \frac{dm(t)}{dt} \right $	condition to be satisfied for step size Δ is (B) $\frac{Ts}{\Delta} \le \max \left \frac{dm(t)}{dt} \right $ (D) $\frac{\Delta}{Ts} \le \max \left \frac{dm(t)}{dt} \right $	

1

ROLL NO. _

Subject: DIGITAL COMMUNICATIONS

	h.	. The fourier transform of $rect\left(\frac{t}{T}\right)$ is			
		(A) sin(fT) (C) Tsin(fT)	(B) sinc(fT)(D) Tsinc(fT)		
	i.	The height of the eye opening of an (A) Jitter (C) Noise Margin	eye pattern defines(B) Time interval(D) Sensitivity to timing errors		
	j.	If R_b is the data rate and B as the Ch efficiency η is	nannel bandwidth, then the Bandwidth		
		(A) $\eta = \frac{R_b}{B}$ bps/Hz	(B) $\eta = \frac{B}{R_b}$ Hz/bps		
		(C) $\eta = 2R_b$ bps	(D) $\eta = \frac{R_b}{2}$ bps		
		Answer any FIVE Questions Each question car	s out of Eight Questions ries 16 marks.		
Q.2	a.	What is autocorrelation function? G	ive its properties.	(6)	
b		Explain the properties of power spectral density function		(10)	
Q.3	a.	a. Explain Nyquist Criterion for Distortionless Base Band transmission.		(12)	
	b.	Explain eye pattern.		(4)	
Q.4	a.	 Explain the Low pass filtering of analog signal using flat top sampling proc with necessary waveforms. 			
	b.	Explain Time Division Multiplexing	g (TDM).	(6)	
Q.5	a.	Explain Delta Modulation (DM) with	th neat diagram.	(10)	
	b.	Derive the SNR for PCM systems.		(6)	
Q.6	a.	a. Differentiate between Probability of errors (Pe) and Bit Error Rate (BER).		(6)	
	b.	Explain Synchronization.		(10)	
Q.7	a.	. Explain Correlation Receiver.		(8)	
	b.	Explain Maximum Likelihood Dec Noise.	coding of coherent detection of signals in	(8)	
Q.8	a.	Explain the generation and propertie	es of PN sequences.	(6)	
	b.	With neat diagram, explain how ra Spread Spectrum technique.	anging is achieved using Direct-Sequence	(10)	
Q.9	a.	What do you mean by Direct-seq keying? Explain it with the help of receiver	uence spread coherent binary phase shift suitable block diagrams for transmitter and	(12)	
	b.	What is processing gain?		(4)	
				<-/	

2