ROLL NO. _

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

AMIETE - ET/CS/IT (Current & New Scheme)

Time: 3 Hours

June 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Q2 TO Q8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME STUDENTS.
- Q9 HAS BEEN GIVEN INTERNAL OPTIONS FOR CURRENT SCHEME (CODE AE51/AC51/AT51) AND NEW SCHEME (CODE AE101/AC101/AT101) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2×10)

a.	If $z = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, then the	e value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is equal to
	$(\mathbf{A}) \sin z$	(B) cos z
	(C) tan z	(D) cot z
b.	The value of the determinant	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(A) 0 (C) 2	(B) 1 (D) 3
c.	If in a determinant the corresponding elements of two rowsIdentical to each other, then the value of the determinant is(A) unity(B) zero(C) infinity(D) None of these	

d. The value of the double integral
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y dy dx_{is}$$
(A) $\frac{a^{3}}{4}$
(B) a^{3}
(C) $\frac{a^{3}}{2}$
(D) $\frac{a^{3}}{3}$

(or columns) are

ROLL NO.

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

e. The value of K for which equations 3x+y-Kz=0, 4x-2y-3z=0 and 2Kx+4y+Kz=0 are consistent, is (A) 4 (B) 3 (C) 2 (D) 1

f. Taylor's series solution of
$$\frac{dy}{dx} = -xy$$
, $y(0) = 1$, upto x^2 is
(A) $y(x) = 1 + x + \frac{x^2}{2} + \dots$
(B) $y(x) = 1 + x - \frac{x^2}{2} + \dots$
(C) $y(x) = 1 + \frac{x^2}{2} + \dots$
(D) $y(x) = 1 - \frac{x^2}{2} + \dots$

g. Using Newton-Raphson method to root of the equation f(x)=0 fails if

(A) f(x) is an exponential function	(B) $f'(x)$ is zero
(C) $ f'(x) = 1$	(D) None of these

- h. A family of straight lines passing through the origin is represented by (A) ydx + xdy = 0 (B) ydx - xdy = 0(C) xdx + ydy = 0 (D) xdx - ydy = 0
- i. The orthogonal trajectories of the family of curves $y = a x^2$ is

(A) $x^2 + y^2 = c^2$	(B) $x^2 - y^2 = c^2$
(C) $x^2 + 2y^2 = c^2$	(D) $xy = c^2$

Where c is an arbitrary constant

- j. A matrix 'A' is said to be idempotent matrix if
 - (A) $A^{T}A = I$ (B) $A^{2} = A$ (C) $A^{K} = A$, K is any positive integer value (D) $A = A^{T}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$x^{x}y^{y}z^{z} = c$$
, show that at $x=y=z$, $\frac{\partial^{2}z}{\partial x \partial y} = -(x \log ex)^{-1}$ (8)

ROLL NO.

b. If
$$x + y = 2e^{\theta} \cos \phi$$
 and $x - y = 2ie^{\theta} \sin \phi$, show that

$$\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$$
(8)

Q.3 a. Change the order of integration and then evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{-\frac{x^2}{y}} dy dx$ (8)

b. Compute $\iiint \frac{dxdydz}{(x+y+z+1)^3}$ if the region of integration is bounded by the coordinate planes and the plane x+y+z=1 (8)

Q.4 a. Find the eigen values and eigen vectors of the matrix. (8)

$$\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

b. Find the values of k for which the system of equations

$$(3k-8)x + 3y + 3z = 0$$

 $3x + (3k-8)y + 3z = 0$
 $3x + 3y + (3k-8)z = 0$
has a non-trivial solution. (8)

- Q.5 a. Develop Newton Raphson formula for finding \sqrt{N} , where N is a real number. Use it to find $\sqrt{41}$. Correct to 3 decimal places. (8)
 - b. Find by Runge-Kutta method of order four, an approximate value of y at x = 0.2 for the equation $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1. Take h = 0.2. (8)
- **Q.6** a. Use method of variation of parameters to solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = \frac{e^x}{x}$. (8)
 - b. Find the general solution of the equation $y'' 6y' + 13y = 8e^{3x} \sin 4x$. (8)

ROLL NO. _

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

Q.7 a. Obtain the series solution of
$$\frac{d^2y}{dx^2} + x^2y = 0$$
 (8)

b. Show that
$$\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right) = 2\int_{0}^{\pi/2} \sqrt{\tan\theta} \,d\theta = 4\int_{0}^{\infty} \frac{x^2 dx}{1+x^4} = \pi\sqrt{2}$$
 (8)

Q.8 a. Prove that
$$\int_{-1}^{1} P_m(n) P_n(n) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$
 (8)

b. Prove that
$$\overline{|m|} \overline{|(m + \frac{1}{2})} = \frac{\sqrt{\pi}}{2^{2m-1}} \overline{|2m|}$$
 and hence evaluate (8)
 $\beta\left(m, \frac{1}{2}\right) = 2^{2m-1}\beta(m, m)$

Q.9 (For Current Scheme students i.e. AE51/AC51/AT51)

a. Prove that
$$J_n(x) = \frac{x}{2n} [J_{n-1}(x) + J_{n+1}(x)]$$
 (8)

b. Show that the family of parabolas
$$x^2 = ua (y + a)$$
 is self orthogonal. (8)

Q.9 (For New Scheme students i.e. AE101/AC101/AT101)

a. Find the Fourier sine transform of
$$\frac{e^{-ax}}{x}$$
 (8)

b. Find a Fourier Series to represent x^2 in the interval $(-\ell, \ell)$ (8)