ROLL NO.	

Code: AC64/AT64/AC115/AT115

Subject: DESIGN & ANALYSIS OF ALGORITHMS

AMIETE - CS/IT (Current & New Scheme)

JUNE 2017 Time: 3 Hours Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of

Q.1	Choose the correct or the best alternative in the following:						
	a. Euclid's algorithm is used to find						
	(A) Factorial	(B) Prime number					
	(C) GCD	(D) Fibonacci number					
	b. A tree is a connected acycli						
	(A) Graph	(B) Stack					
	(C) Queue	(D) Linked list					
	c. The theoretical evaluation of time complexity of a program is based on theoperation.						
	(A) basic	(B) input					
	(C) output	(D) complex					
	· · · · · · · · · · · · · · · · · · ·						
	e The data structure used in h	readth-first search traversal in graph is					
	(A) Stack	(B) Array	·				
	(C) Priority queue	(D) Queue					
	f. The space complexity of Selection sort algorithm is						
	(A) O(1)	(B) $O(2^n)$					
	$(\mathbf{C}) \ \mathrm{O}(\mathrm{n})$	$(\mathbf{D}) \mathrm{O}(\mathrm{n}^3)$					
	g. An AVL tree is a						
	(A) Free Tree	(B) 3-node Tree					
	(C) Binary search Tree	(D) Unbalanced Tree					
	h. Warshall's algorithm is use	d to find theof a graph.					
	(A) length	(B) Transitive closure					
	(C) spanning tree	(D) shortest path					

ROLL NO.		

Code: AC64/AT64/AC115/AT115

Subject: DESIGN & ANALYSIS OF ALGORITHMS

- i. The value of d2= 1 in a good-suffix table for the pattern BARBER is
 - (A) 6

(B) 0

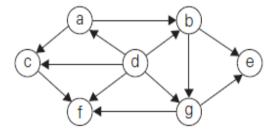
(C) 3

- **(D)** 4
- j. The is not a principle of Greedy techniques.
 - (A) feasible solution
- (B) Backtracking
- (C) locally optimal solution
- (D) Irrevocable

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a. Explain the Algorithm design and analysis process with a neat diagram. **Q.2**

(10)


b. Write Euclid's algorithm to find the GCD of two numbers.

(6)

- 0.3 a. Solve the following recurrence relations using backward substitution method. (3+3)
 - (i) X(n) = X(n-1) + 5
- for n > 1, X(1) = 0
- (ii) M(n) = 2M(n-1) + 1
- for n > 1, M(1) = 1.
- b. Write a recursive algorithm for finding the factorial of a given number and analyze its complexity using backward substitution method. (6+4)
- **Q.4** a. Write a brute-force string matching algorithm. Determine the number of character comparisons made by the brute-force algorithm in searching for the pattern **GANDHI** in the following text. (6+4)

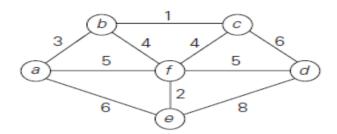
THERE_IS_MORE_TO_LIFE_THAN_INCREASING_ITS_SPEED

- b. Apply quicksort to sort the list E, X, A, M, P, L, E in alphabetical order. Draw the tree of the recursive calls made.
 - **(6)**
- Q.5 a. Apply the DFS-based algorithm to solve the topological sorting problem for the following digraphs: **(6)**

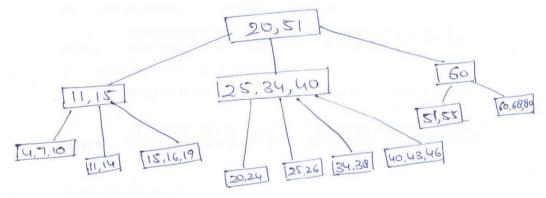
b. Write Johnson-Trotter algorithm for generating permutations. Generate the next **4** permutations of the following sequence. (10)

4 2 3 1

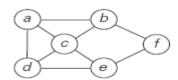
- **Q.6** a. Construct 2-3 tree for the list C,O, M, P,U, T, I,N,G. Use the alphabetical order of the letters and insert them successively starting with the empty tree. **(6)**
 - b. Write a Bottom-up heap construction algorithm and analyze its worst case complexity. (5+5)


(8)

(6)


Code: AC64/AT64/AC115/AT115

Subject: DESIGN & ANALYSIS OF ALGORITHMS


Q.7 a. Find the minimum spanning tree of the following graph using Prim's algorithm. (8)

- b. Write Floyd's algorithm and analyze its complexity.
- Q.8 a. Define B tree by mentioning its properties. Insert the value 65 for given B tree of order 4. (10)

- b. Write a note on P and NP problem types.
- Q.9 a. Apply backtracking to the problem of finding a Hamiltonian circuit in the following graph. (6)

b. Solve the following instance of the knapsack problem by the branch-and bound Algorithm: (10)

item	weight	value	value weight	
1	4	\$40	10	_
2	7	\$42	6	The knapsack's capacity W is 10.
3	5	\$25	5	
4	3	\$12	4	
3	7 5	\$42 \$25		The knapsack's capac