Code: AC59/AT59/AC110/AT110

Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

AMIETE - CS/IT (Current & New Scheme)

Time: 3 Hours

JUNE 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions, selecting at least TWO questions from each part. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:										
	a. Operating system acts intermediate between										
	(A) user and computer hardware	(B) user and programs									
	(C) memory and CPU	(D) Disk and Cache									
	b. Thread is										
	(A) Lightweight Process	(B) Heavyweight process									
	(C) Neutral Process	(D) Single task									
	c. The no of states in Process state di	agram is									
	(A) 3	(B) 4									
	(C) 5	(D) 6									
	d. Banker's Algorithm is used in	Process									
	(A) Deadlock Avoidance	(B) Deadlock preemption									
	(C) Deadlock detection	(D) Deadlock recovery									
	e. When is Round Robin(RR) Scheduling is same as Fist Come First Serv Algorithm?										
	(A) When the CPU time of 1 st process is less than given quantum in RR										
	(B) When CPU time of last process is less than given quantum in RR										
	(C) When all processes' burst time is less than given quantum in RR										
	<u>•</u>	is greater than given quantum in RR									
	f. Which of the following is NOT true of deadlock prevention and deadlock avoidance schemes?										
	(A) In deadlock prevention, the request for resources is always granted if resulting state is safe										
		uest for resources is always granted if the									
	(C) Deadlock avoidance is less res	trictive than deadlock prevention									

(D) Deadlock avoidance requires knowledge of resource requirements a priori

ROLL NO.	

Code: AC59/AT59/AC110/AT110

Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

	g.	A critical section is a program segment (A) which should run in a certain specified amount of time (B) which avoids deadlocks (C) where shared resources are accessed (D) which must be enclosed by a pair of semaphore operations, P and V																		
	h.	When loaded (A) set (C) pa	d in egme	phy: entai	sica tion	l men fault	nory,	ther	-	(B)	nat is m) fatal e) no err	rror	occ	urs	ess s	spac	e but	: not		
	i.	by pro (A) M (C) R	ogra Iutua	ms o	only cclu	wher	ı it ru			of fre	mory a e memo Garba) Dema	ory 1 ge c	to al	locate ction		ory r	eturi	ned		
	j.	Which (A) na (C) list	ature	e of	a da	ıta str	ucture	e	sed	(B)	criteric purpos All of	se of	f a d				data			
		Answ	er a	t lea	ast '	ГWО	ques		ART is. E		questi	on c	arri	ies 16 1	mai	rks.				
Q.2	a.	List th						-		_	system	with	n reg	gard to	pro	cess	3		(4	l)
	b.	Distin	guis	sh be	etwo	een m	ultipr	ogra	amn	ning	and mu	ıltip	roce	essings	syst	ems			(6	6)
	c.		ated						-		g systei tes for	-					_			5)
Q.3	a.	follow (i) Pro	ving oces	: s				ing?	Ex	(ii)	Proces	s Co	ontro					ie tł		
		(iii) M		•	Ū					,) Time								(2×4	.)
	b.					_	•		-		using d D, and					he B	anke	er's		
				M	ax		A	Allo	catio	n	Nee	d			A	vaila	able			
				В		D	A	В	C	D	A	В	C	D		В		D		
		P0	6		1		4	0	0	1					3	2	1	1		
		P1		7				1 2	0	0										
		P2 P3	1		5			6												
		P4	1	6	5		0	2	1	2										
			-								llowing	g qu	estic	ons.						
		_				_					and D								(1)

ROLL NO	

Code: AC59/AT59/AC110/AT110

Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

(ii) What are the contents of the Need matrix? **(1)** (iii) Is the system in a safe state? Justify. **(3)** (iv) If a request from process P4 arrives for additional resources of (1,2,0,0), can the Banker's algorithm grant the request immediately? Show the new System state and other criteria. (3)**Q.4** a. Define critical regions. Give a solution for reader-writers problem using conditional critical regions. (8)b. What criteria should be adopted for choosing type of file organization? (8)Q.5 a. Explain memory allocation model during the execution of a program. (8)b. Describe the First fit, Best fit and Worst fit allocation algorithms. Given memory partitions of 100K, 500K, 200K, 300K, and 600K (in order), how would each of the First-fit, Best-fit, and Worst-fit algorithms place processes of 212K, 417K, 112K and 426K (in order)? Which algorithm makes the most efficient use of memory? Program name Size 40KB C-D 90KB Е **55KB** 70KB How much total fragmentation would be there when using (i) first-fit (ii) best-fit criterion for memory allocation. **(8) PART B** Answer at least TWO questions. Each question carries 16 marks. a. Define language processing. Give example. **(8)** 0.6 b. Give generic procedure to search and locate the entry of symbol s in a search data structure. Give algorithm for binary search organization. (8)**Q.7** a. Define DFA and Regular expression. Give one example for each. **(8)** b. Write a note on nested macro calls with example **(8)** a. Write a note on assembly language of Intel 8088. **Q.8** (8)b. What is the role of assembler? Explain various tasks performed by the passes of a two pass assembler. **(8) Q.9** a. What is memory allocation? Explain static and dynamic memory allocation. (8)b. Explain the computation of control structures with appropriate compilation action. (8)