ROLL NO.	

Code: AC103/AT103 Subject: ANALOG AND DIGITAL ELECTRONICS

AMIETE - CS/IT (New Scheme)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Ouestions answer any FIVE Ouestions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 (Choose the correct	or the bes	st alternative	in the following:
-------	--------------------	------------	----------------	-------------------

 (2×10)

- The temperature coefficient of an intrinsic semiconductor is
 - (A) zero.

(B) positive.

(C) negative.

- **(D)** None of these.
- b. The width of depletion layer of a P-N junction
 - (A) decreases with light doping.
- **(B)** increases with heavy doping.
- (C) is independent of applied voltage. (D) is increased under reverse bias.
- c. Bridge rectifiers are preferred because
 - (A) they require small transformer.
 - **(B)** they have less peak inverse voltage.
 - (C) they need small transformer and also have less peak inverse voltage.
 - (**D**) they have low ripple factor.
- d. An emitter in a bipolar junction transistor is doped much more heavily than the base as it increases the
 - (A) emitter efficiency.
- **(B)** base transport factor.
- (C) forward current gain.
- **(D)** All of these.
- In an R-C phase shift oscillator, the minimum number of R-C networks to be connected in cascade will be
 - (A) one.

(B) two.

(C) three.

- (**D**) four.
- The decimal equivalent of hexadecimal number 03E3 is
 - **(A)** 3416

(B) 2989

(C) 205

- **(D)** 1000
- According to De-Morgan's second theorem
 - (A) A NAND gate is always complementary to an AND gate.
 - **(B)** An AND gate is equivalent to a bubbled NAND gate.
 - (C) A NAND gate is equivalent to a bubbled AND gate.
 - (**D**) A NAND gate is equivalent to a bubbled OR gate.

ROLL NO.	

Code: AC103/AT103 Subject: ANALOG AND DIGITAL ELECTRONICS

h.	In a sequential	circuit,	the output	state c	lepends	s upon
----	-----------------	----------	------------	---------	---------	--------

- (A) past output states and present input states.
- **(B)** input states only.
- (C) input and output states.
- (**D**) None of these.
- i. D flip-flop can be configured from
 - (A) J-K flip-flop and an inverter.
- (B) R-S flip-flop.
- (C) R-S flip-flop and an inverter.
- **(D)** Both **(A)** and **(B)**
- j. The number of flip-flops required in a decade counter is
 - **(A)** 2

(B) 3

(C) 4

(D) 10

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. What is forbidden energy gap? Differentiate among insulators, semiconductors and conductors on the basis of band gap.(4)
 - b. A copper wire of 2 mm diameter with conductivity of 5.8×10^7 s/m and electron mobility of $0.0032 \text{ m}^2 / \text{V-s}$ is subjected to an electric field of 20 mv/m. Find (6)
 - (i) charge density of free electrons
- (ii) current density
- (iii) drift velocity of the electron
- c. What are the two basic types of capacitances associated with P-N junction? How will you represent the capacitive effect of a practical diode on an ideal diode? (6)
- Q.3 a. What is the necessity of having filter in the power supply? Explain the following characteristics of a power supply(8)
 - (i) peak Inverse voltage
- (ii) ripple factor
- (iii) rectification efficiency
- (iv) regulation
- (v) TUF (transformer utilization factor)
- b. What is the difference between clipping and clamping? Explain the operation of a positive Clamper circuit with its output waveform for an ideal diode. (8)
- Q.4 a. What do you understand by transistor biasing? Why is it necessary to bias a transistor? Explain the operation of a potential -divider bias circuit. (8)
 - b. Derive the relationship between α and β of a transistor. In a transistor I_C =0.95 mA, I_E = 1 mA. Determine I_B , α and β in CB Configuration. (8)

ROLL NO.	

Code: AC103/AT103 Subject: ANALOG AND DIGITAL ELECTRONICS

Q.5	a.	A single stage amplifier has a gain of 60. The collector load $R_C = 500 \Omega$, rife the input impedance is $1 \text{K}\Omega$. Calculate the load when two stages are cascaded	
		capacitor coupling.	(6)
	b.	Draw the circuit of R-C phase shift oscillator and derive an expression frequency of oscillation.	for its (10)
Q.6	a.	What is the trade-off between parallel and serial transmission of binary data?	(3)
	b.	Differentiate between Static and Dynamic RAM.	(4)
	c.	Find out the following (i) Octal equivalent of (2F.C4) ₁₆ . (ii) Decimal equivalent of (1A2B) ₁₆ (iii) Gray code equivalent of (15) _D	(9)
Q.7	a.	How will you use an Ex-OR gate as an inverter?	(4)
	b.	Implement $Y = \overline{AB} + A + (\overline{B+C})$ using NAND gate only.	(4)
	c.	Simplify the following three-variable expression using Boolean algebra Y (A, B, C) = Σ m (0, 1, 3, 4, 7)	(4)
	d.	Simplify the following Boolean expression using Karnaugh map $Y = \Sigma m(1,3,7,11,15) + d(0,2,5)$	(4)
Q.8	a.	Write down the following decimal numbers in 2's complement representation bits (i) -44 (ii) 64	using 8 (4)
	b.	Explain the operation of a 4-bit parallel binary adder using cascaded full-adder	rs. (4)
	c.	Design a two-bit comparator circuit.	(8)
Q.9	a.	Briefly explain why a ripple counter's maximum usable clock frequency decremore flip-flops are added to the counter to increase its mod number.	eases as (4)
	b.	What is meant by the race around condition in J-K flip-flop? How ca overcome?	n it be (4)
	c.	With the help of schematic arrangement, explain, how a J-K flip-flop can be up D flip-flop?	sed as a (4)
	d.	Draw a synchronous MOD-16 down counter.	(4)