 Code:
AE-35/AC-35/AT-35                                                             Subject:
MATHEMATICS-II
Code:
AE-35/AC-35/AT-35                                                             Subject:
MATHEMATICS-II
NOTE: There are 9 Questions in all.
· Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
· Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
· Any required data not explicitly given, may be suitably assumed and stated.
Q.1 Choose the correct or best alternative in the following: (2x10)
a. If the ends x = 0 and x = L are insulated in one dimensional heat flow problems, then the boundary conditions are
                   (A) 
 at t=0.
 at t=0.  
                   (B)   at t=0.
 at t=0.
(C) 
   .
.                                                                          
(D)   .
.
b.      If  is
a solution of
 is
a solution of  ,
then the value of C is
,
then the value of C is      
(A) 1. (B) 2 .
(C)   .                                             (D)
.                                             (D) 
 .
.
             c.   The curves  and
 and  are orthogonal if
 are orthogonal if
(A) u and v are complex functions. (B) u + iv is an analytic function.
(C) u – v is analytic function. (D) u + v is an analytic function.
             d.   The value of  along the line x
= y is
 along the line x
= y is 
(A)  
  (B)
                                             (B) 

(C)   (D)
                                           (D) 

             e.   The critical
points of the transformation  are given as
 are given as 
(A)    
 (B)
                                              (B) 

(C)   (D)
                                             (D) 

f. If the mean and variance of binomial variate are 12 and 4, then the probabilities of the distribution are given by the terms in the expansion of
(A)    
 (B)
                                   (B) 

(C)   (D)
                                   (D) 

             g.   The  of a random
variable X is
 of a random
variable X is  ,
then E(X) is given as
,
then E(X) is given as 
(A) 5 (B) 6
(C) 7 (D) 8
             h.   If  is a conservative
force field, then the value of curl
 is a conservative
force field, then the value of curl  is
 is  
(A) 0 (B) 1
(C)  (D)
                                               (D)

             i.    If  and
 and  then
 then  is equal to
 is equal to  
(A) 
 5u                                                (B)
5
(C) 5 (D)
5
                                      (D)
5
             j.    If  then
 then  , where S is the
surface of unit sphere is
, where S is the
surface of unit sphere is   
(A)   (B)
                                               (B) 

(C)   (D)
                                               (D)

Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
  Q.2     a.   Solve
the differential equation  for the conduction of heat along a
rod without radiations, subject to the following conditions:
 for the conduction of heat along a
rod without radiations, subject to the following conditions:
(i)                 
u is not
infinite for  .
.
(ii)               
 for x = 0 and x =
L.
 for x = 0 and x =
L.
(iii)              
 , for t = 0 between
x = 0 and x = L.                     (10)
, for t = 0 between
x = 0 and x = L.                     (10) 
             b.   Solve
 subject
to the boundary condition
 subject
to the boundary condition  as
as  .                                                                    (6)
.                                                                    (6)
Q.3 a. From a bag containing a black and b white balls, n ball are drawn at random without replacement. Let X denote the number of black balls drawn. Find the probability mass function of random variable X and compute expectation of Y = 2 + 3 X. (5)
b. If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction. (5)
             c.   If X is a continuous random variable with p.d.f. given by  
   
Find the value of k and mean value of X. (6)
  Q.4     a.   Using
the method of separation of variables, solve  , where
, where  .                                                                      (8)
.                                                                      (8)
             b.   If the directional
derivative of  at
the point
 at
the point  has
maximum magnitude 15 in the direction parallel to the line
 has
maximum magnitude 15 in the direction parallel to the line  , find the values of a, b
and c.  (8)
, find the values of a, b
and c.  (8)
  Q.5     a.   If
 where
 where  , show that
, show that  .             (8)
.             (8)
b. Show that the integral
                    is
independent of the path joining the points (1,2) and (3,4).  Hence evaluate the
integral.                             (8)
 is
independent of the path joining the points (1,2) and (3,4).  Hence evaluate the
integral.                             (8)
  Q.6     a.   Use Stoke’s theorem to evaluate  , where
, where  and C is the
bounding curve of hemisphere
 and C is the
bounding curve of hemisphere  oriented in the +ve direction.                                     (8)
 oriented in the +ve direction.                                     (8)
             b.   The vector field  is defined over
the volume of the cuboid given by
is defined over
the volume of the cuboid given by  ,
,  . Evaluate the surface integral
. Evaluate the surface integral  , where S is the
surface of the cuboid.     (8)
, where S is the
surface of the cuboid.     (8)
  Q.7     a.   Find
the points where C-R equations are satisfied for the function  .  Where does
.  Where does  exist?  Where
 exist?  Where  analytic?                (8)
 analytic?                (8)   
             b.   Find analytic function  where
 where  .                   
(8)
.                   
(8)
Q.8 a. Find the images in w-plane of
(i)                 
The circle
with centre  and
radius
 and
radius  .
.
(ii)               
The interior
of the circle in (i) in z-plane, under the mapping  .                 (8)
.                 (8)
             b.   Expand
 in Laurents
series valid for
 in Laurents
series valid for  .             (8)
.             (8)
  Q.9     a.   Evaluate
 .                                                                     (10)
.                                                                     (10)
             b.   Use Cauchy Integral
formula to evaluate  , where C is the circle
, where C is the circle  , traversed
counter clock wise.                              (6)
, traversed
counter clock wise.                              (6)