Flowchart: Alternate Process: JUNE 2007Code: AE-35/AC-35/AT-35                                                             Subject: MATHEMATICS-II

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

 

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

       

a.       If the ends x = 0 and x = L are insulated in one dimensional heat flow problems, then the boundary conditions are      

 

                   (A)   at t=0. 

                   (B)   at t=0.

(C)    .                                                                         

(D)  .

                

b.      If  is a solution of , then the value of C is      

 

(A)    1.                                                 (B)  2 .  

(C)  .                                             (D)  .

                     

             c.   The curves  and  are orthogonal if

                  

(A)    u and v are complex functions.      (B)  u + iv is an analytic function.

(C)  u – v is analytic function.               (D)  u + v is an analytic function.

 

             d.   The value of  along the line x = y is

 

(A)                                                 (B) 

(C)                                             (D) 

             e.   The critical points of the transformation  are given as

                                      

(A)     *                                              (B) 

(C)                                               (D) 

             f.    If the mean and variance of binomial variate are 12 and 4, then the probabilities of the distribution are given by the terms in the expansion of  

 

(A)                                        (B) 

(C)                                     (D) 

 

             g.   The  of a random variable X is , then E(X) is given as

 

(A)     5                                                  (B)  6

(C)  7                                                  (D)  8

 

 

             h.   If  is a conservative force field, then the value of curl  is  

 

(A)    0                                                  (B) 1

(C)                                                (D)

 

             i.    If  and  then  is equal to  

 

(A)   5u                                                (B) 5

(C) 5                                      (D) 5

 

             j.    If  then , where S is the surface of unit sphere is   

 

(A)                                                 (B) 

(C)                                                 (D)

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

  Q.2     a.   Solve the differential equation  for the conduction of heat along a rod without radiations, subject to the following conditions:

(i)                  u is not infinite for .

(ii)                 for x = 0 and x = L.

(iii)               , for t = 0 between x = 0 and x = L.                     (10)

       

             b.   Solve  subject to the boundary condition as .                                                                    (6)

 

  Q.3     a.   From a bag containing a black and b white balls, n ball are drawn at random without replacement.  Let X denote the number of black balls drawn.  Find the probability mass function of random variable X and compute expectation of Y = 2 + 3 X.                                                                (5)

 

             b.   If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction.                                                               (5)

 

             c.   If X is a continuous random variable with p.d.f. given by   

                   Find the value of k and mean value of X.                                                            (6)

 

  Q.4     a.   Using the method of separation of variables, solve , where .                                                                      (8)

 

             b.   If the directional derivative of  at the point  has maximum magnitude 15 in the direction parallel to the line , find the values of a, b and c. (8)

 

  Q.5     a.   If  where , show that .             (8)

       

             b.   Show that the integral

                    is independent of the path joining the points (1,2) and (3,4).  Hence evaluate the integral.                             (8)

 

  Q.6     a.   Use Stoke’s theorem to evaluate , where  and C is the bounding curve of hemisphere  oriented in the +ve direction.                                     (8)

 

             b.   The vector field is defined over the volume of the cuboid given by , . Evaluate the surface integral , where S is the surface of the cuboid.     (8)

         

  Q.7     a.   Find the points where C-R equations are satisfied for the function .  Where does  exist?  Where  analytic?                (8)   

 

             b.   Find analytic function  where .                   (8)

 

  Q.8     a.   Find the images in w-plane of              

(i)                  The circle with centre  and radius .

(ii)                The interior of the circle in (i) in z-plane, under the mapping .                 (8)

                  

             b.   Expand  in Laurents series valid for .             (8)

 

  Q.9     a.   Evaluate .                                                                     (10)

 

             b.   Use Cauchy Integral formula to evaluate , where C is the circle , traversed counter clock wise.                              (6)