Code: AE-01/AC-01/AT-01                                                               Subject: MATHEMATICS-I Flowchart: Alternate Process: JUNE 2007

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

 

                

a.       The value of limit  is

 

                   (A)  0                                                  (B)  1

(C)    limit does not exist                       (D)  -1

                

b.      If   then the value of  is equal to

 

(A)    0                                                  (B) 

(C)                                             (D) 

            

             c.   If  , then the value of  is

                        

(A)    z                                                  (B)  2z

(C)  tan(z)                                           (D)  sin(z)

 

             d.   The value of integral is equal to

 

(A)                                                   (B)

(C)                                                 (D)       

 

             e.   The differential equation of a family of circles having the radius r and the centre on the x-axis is given by                                                                                                                                            

 

(A)                           (B) 

(C)                        (D) 

 


             f.    The solution of the differential equation satisfying the initial conditions y(0) = 1, y(π/2) = 2 is  

 

(A)     y = 2 cos(x) + sin(x)                     (B)  y = cos(x) + 2 sin(x)

(C)  y = cos(x) + sin(x)                        (D)  y = 2 cos(x) + 2 sin(x)

 

             g.   If  the matrix  then    

 

(A)     C=Acos(θ) – Bsin(θ)                   (B)  C=Asin(θ) + Bcos(θ)

(C)  C=Asin(θ) – Bcos(θ)                   (D)  C=Acos(θ) + Bsin(θ)

 

             h.   The three vectors (1,1,-1,1), (1,-1,2,-1) and (3,1,0,1) are

 

(A)    linearly independent                      (B) linearly dependent

(C) null vectors                                    (D) none of these.

 

             i.    The value of is equal to

 

(A)   1                                                  (B) 0

(C)                                                  (D)

 

                      j.    The value of the integral  is    

 

(A)                                    (B) 

(C)                                 (D)

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

  Q.2     a.   For the function show that  .                                                                    (8)

                  

       

             b.   Find the absolute maximum and minimum values of the function  over the rectangle in the first   quadrant bounded by the lines x = 2, y = 3 and the coordinate axes.   (8) 

       

  Q.3     a.   If , find an approximate value of f(1.1,0.8) using the Taylor’s series quadratic approximation.                                     (8)                                                             

 

             b.   Evaluate the integral  by changing to polar coordinates, where R is the region in the x-y plane bounded by the circles  and =9.                                                 (8)

 

  Q.4     a.   Find the solution of the differential equation

                   (y-x+1)dy – (y+x+2) dx = 0.                                                                             (6)

 

             b.   Solve the differential equation                                                                                 

                                                                      (6)

 

             c.   Show that the functions 1, sin x, cos x are linearly independent.                            (4)

                                                                                                                                                

  Q.5     a.   Using method of undetermined coefficients, find the general solution of the equation .             (8)

                                                                             

             b.   Solve .                                                (8)          

                  

  Q.6     a.   In an L-C-R circuit, the   charge   q   on   a plate of a condenser is given by . The circuit is tuned to resonance so that  . If initially the current I and the charge q be zero, show that, for small values of R/L, the current in the circuit at time t is given by (Et/2L)sinpt.                     (8)

 

             b.   Find a linear transformation T from  into such that                                       

                                                                      (8)

 

  Q.7     a.   Examine, whether the matrix A is diagonalizable. .  If, so, obtain the   matrix P such that is a diagonal matrix.                  (8)

            

             b.   Investigate the values of µ and λ so that the equations , has (i) no solutions (ii) a unique solution and (iii) an infinite number of solutions.                  (8)

            


  Q.8     a.   Find the power series solution about the point of the equation .                                                                      (11)

                  

             b.   Express f(x)= in terms of Legendre Polynomial.              (5)

 

  Q.9     a.   Express  in terms of  and .                                                    (8)

 

             b.   If show that .          (8)