ROLL NO. _

Code: DE63

Time: 3 Hours

Subject: DIGITAL COMMUNICATIONS

Diplete – Et

JUNE 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Which of the following system is digital?

(A) Pulse code modulation	(B) Pulse position modulation
(C) Pulse width modulation	(D) Pulse amplitude modulation

b. In PCM system, output S/N increases

(A) Linearly with bandwidth	(B) Exponentially with bandwidth
(C) Inversely with bandwidth	(D) None of these

c. The modulation technique used in the GSM is

(A) QPSK	(B) MSK
(C) GMSK	(D) ASK

d. _____ is most affected by noise

(A) PSK	(B) ASK
(C) FSK	(D) DPSK

- e. Comparison of MSK and QPSK schemes shows that
 - (A) MSK requires more bandwidth comparatively

(B) QPSK requires less power comparatively

- (C) Filtering is simple in MSK
- (**D**) None of these

Code: DE63

 ROLL NO.

 Subject: DIGITAL COMMUNICATIONS

 _			
f.	The amount of information of an eve	ent is	
	 (A) Directly proportional to probabi (B) Inversely proportional to probab (C) Directly proportional to square of (D) Inversely proportional to square 	lity of occurrence ility of occurrence of probability of occurrence of probability of occurrence	
g.	cy component W. The minimum Nyquist		
	(A) 2W	(B) 1W	
	(C) 3W	(D) 4W	
h.	h. For speech coding, the μ law companding is used with $\mu = __\generally.$		
	(A) 5255	(B) 255	
	(C) 10255	(D) 1255	
i.	i. A AWGN channel of bandwidth 4KHz and S/N of 1.25×10^4 . The cha capacity is b/s		
	(A) 54.44 K	(B) 200K	
	(C) 100 K	(D) 4K	
j.	Granular noise is associated with		
	(A) PCM	(B) DPCM	
	(C) DM	(\mathbf{D}) OAM	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	 A discrete Memoryless source has four symbols S₀,S₁,S₂,S₃ with probabi of 0.4,0.3,0.2 and 0.1 respectively. (i) Calculate the amount of information in each symbol 	lities
		(ii) Calculate entropy of the source	(8)
	b.	Draw and explain the block diagram of a digital communication system.	(8)

- Q.3 a. Explain how Sample and Hold circuit is used for signal recovery. (8)
 - b. State and prove sampling theorem for low pass signal and bandpass signals.(8)
- Q.4 a. Explain Delta Modulation (DM) in detail with the help of neat block diagram. Also discuss its advantages and disadvantages. (8)

Code: DE63

Subject: DIGITAL COMMUNICATIONS

b. A PCM signal uses a uniform Quantizer followed by a 7 bit binary encoder. The bit rate of the system is equal to 50 × 10⁶ bits/sec.
(i) What is the maximum message bandwidth for which system operates satisfactory?

(ii) Calculate the output signal to quantization noise ratio when the full load sinusoidal modulating wave of frequency 1 MHz is applied to the input. (8)

- Q.5 a. Explain Inter Symbol Interference (ISI). How eye pattern technique is used to study ISI.
 (8)
 - b. Explain the working of precoded duo binary system with a suitable block diagram. (8)
- Q.6 a. Draw and explain the block diagram of QPSK. (8)
 - b. For an FSK system, the following data are observed. Transmitted binary data rate = 2.5×10^6 bits/sec, power spectra density of noise = 10^{-20} watts/Hz. Amplitude of received signal = 1μ V. Determine the average probability of symbol of symbol error assuming coherent detection [erfc(2.23)= 1.84×10^{-3}]
 - (8)
- Q.7 a. Explain geometric interpretation of signals. (8)
 - b. Obtain the orthonormal basis functions for the signal $S_1(t)$ shown below. (4)

c.	Why do we go fo	r Gram-Schmidit Ortl	nogonalization p	rocedure? (4))
•••			iogonalization p	()	,

- Q.8 a. Draw the block diagram of transmitter and receiver section of direct sequence spread spectrum. Also list the advantages of DS-SS. (8)
 - b. Explain PN sequence. Enlist its properties. (8)
- **Q.9** Write Short note on any <u>**TWO**</u>:
 - (i) Adaptive Equalizers
 - (ii) Digital Multiplexers
 - (iii) Lightwave Transmission (8+8)