ROLL NO.

Code: DE55 / DC55

Time: 3 Hours

Subject: ENGINEERING MATHEMATICS - II

Diplete – Et/cs

JUNE 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The value of $\lim_{x \to 0} \left(\frac{1}{x}\right)^{\tan x}$ is: (A) -1 (B) 0 (C) 1 (D) 2

b. The value of $\int_{0}^{\pi/2} \sin^{6} x \cos^{4} x \, dx$ is:

(A)
$$\frac{3\pi}{512}$$
 (B) $\frac{\pi}{128}$
(C) $\frac{-\pi}{128}$ (D) $\frac{-3\pi}{512}$

c. The multiplicative inverse of 3-4i is:

(A) $\frac{4}{25} + \frac{3}{25}i$	(B) $\frac{3}{25} - \frac{4}{25}i$
(C) $\frac{3}{25} + \frac{4}{25}i$	(D) $\frac{4}{25} - \frac{3}{25}i$

- d. The area of the parallelogram formed by the vectors $\vec{a} = 3\hat{i} + 2\hat{j}$, $\vec{b} = 2\hat{j} 4\hat{k}$ is:
 - (A) $4\sqrt{61}$ sq units (B) $2\sqrt{61}$ sq units (C) $3\sqrt{61}$ sq units (D) $\sqrt{61}$ sq units

ROLL NO.

Code: DE55 / DC55 Subject: ENGINEERING MATHEMATICS - II

e. The value of λ such that the vectors $\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 5\hat{i} - 9\hat{j} + 2\hat{k}$ are perpendicular to each other is:

(A)
$$\frac{5}{16}$$
 (B) $\frac{5}{24}$
(C) $\frac{-5}{16}$ (D) $\frac{16}{5}$

f. If $\frac{d^2 y}{dx^2} - y = 2 + 3x$, then C.F. is: (A) $C_1 e^x + C_2 e^{-x}$ (B) $C_1 \cos x + C_2 \sin 3x$ (C) $e^x (C_1 \cos x + C_2 \sin x)$ (D) $C_1 e^x + C_2 e^{2x}$

g. If f(x) = x, as a Fourier series in the interval $[-\pi, \pi]$ then the value of a_0 is:

h. Value of L[5sin2t - 3cos2t] is:

(A)
$$\frac{3s-10}{s^2+4}$$
, $s > 0$
(B) $\frac{10-3s}{s^2+4}$, $s > 0$
(C) $\frac{5s+6}{s^2+4}$, $s > 0$
(D) $\frac{6-5s}{s^2+4}$, $s > 0$

i. Value of $L[e^{3t} \sin 4t]$ is:

(A)
$$\frac{4}{s^2 - 6s + 25}$$

(B) $\frac{4}{s^2 + 6s + 25}$
(C) $\frac{4}{s^2 - 6s + 9}$
(D) $\frac{4}{s^2 + 6s + 9}$

j. The value of
$$L^{-1} \left[\frac{4s+15}{16s^2 - 25} \right]$$
 is:

(A)
$$\frac{1}{4} \cosh\left(\frac{5}{4}t\right) + \sinh\left(\frac{4}{5}t\right)$$
 (B) $\cosh\left(\frac{4}{5}t\right) + \sinh\left(\frac{4}{5}t\right)$
(C) $\frac{1}{4} \cosh\left(\frac{5}{4}t\right) + \frac{3}{4} \sinh\left(\frac{5}{4}t\right)$ (D) $\cosh\left(\frac{5}{4}t\right) - \frac{3}{4} \sinh\left(\frac{5}{4}t\right)$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Evaluate
$$\lim_{x \to 0} \frac{\log \sin 2x}{\log \sin x}$$

(8)

ROLL NO.

Code: DE55 / DC55 Subject: ENGINEERING MATHEMATICS - II

b. Expand cos x in powers of $\left(x - \frac{\pi}{4}\right)$ upto 4 terms (using Taylor's Expansion). (8)

Q.3 a. Evaluate
$$\int_{0}^{2a} x^2 \sqrt{2ax - x^2} dx$$
. (8)

b. Find the volume generated by revolving the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ about the x-axis. (8)

Q.4 a. If
$$x + iy = \sqrt{\frac{a + ib}{c + id}}$$
, prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$. (8)

b. Prove that

$$(1+i)^n + (1-i)^n = 2^{(n/2)+1} \cos\left(\frac{n\pi}{4}\right)$$
 (8)

Q.5 a. What is the unit vector perpendicular to each of the vectors $2\hat{i} - \hat{j} + \hat{k} \& 3\hat{i} + 4\hat{j} - \hat{k}$? Calculate the sine of the angle between these two vectors. (8)

b. A force is represented in magnitude and direction by the line joining the point A(1,-2,4) to the point B(5,2,3). Find its moment about the point (-2,3,5). (8)

Q.6 a. Solve
$$\frac{d^2 y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{3x}$$
 (8)

b. Solve
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 2x^2$$
, given that $y(0) = 0$ and $y'(0) = 0$. (8)

Q.7 a. Obtain a Fourier series representation for f(x) where

$$f(x) = \left(\frac{\pi - x}{2}\right)^2, 0 < x < 2\pi.$$
 (8)

- b. Find the Fourier sine series which represents $f(x) = \pi - x$ in the interval $(0, \pi)$ (8)
- **Q.8** a. Find the Laplace transform of $t^2 \cos at$ (8)
 - b. Find Laplace transform of $\frac{1-e^{2t}}{t}$ (8)

Q.9 a. Find
$$L^{-1} \left\{ \frac{3s+9}{(s^2+2s+10)} \right\}$$
 (8)

b. Use convolution theorem to find
$$L^{-1} \left\{ \frac{1}{(s^2 - s - 2)} \right\}$$
 (8)