\qquad

DipIETE - ET/CS

Time: 3 Hours
JUNE 2013
Max. Marks: 100
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)^{\tan x}$ is:
(A) -1
(B) 0
(C) 1
(D) 2
b. The value of $\int_{0}^{\pi / 2} \sin ^{6} x \cos ^{4} x d x$ is:
(A) $\frac{3 \pi}{512}$
(B) $\frac{\pi}{128}$
(C) $\frac{-\pi}{128}$
(D) $\frac{-3 \pi}{512}$
c. The multiplicative inverse of $3-4 \mathrm{i}$ is:
(A) $\frac{4}{25}+\frac{3}{25} \mathrm{i}$
(B) $\frac{3}{25}-\frac{4}{25} \mathrm{i}$
(C) $\frac{3}{25}+\frac{4}{25} \mathrm{i}$
(D) $\frac{4}{25}-\frac{3}{25} \mathrm{i}$
d. The area of the parallelogram formed by the vectors $\vec{a}=3 \hat{i}+2 \hat{j}, \vec{b}=2 \hat{j}-4 \hat{k}$ is:
(A) $4 \sqrt{61}$ sq units
(B) $2 \sqrt{61}$ sq units
(C) $3 \sqrt{61}$ sq units
(D) $\sqrt{61}$ sq units
e. The value of λ such that the vectors $\vec{a}=\lambda \hat{i}+2 \hat{j}+\hat{k}, \vec{b}=5 \hat{i}-9 \hat{j}+2 \hat{k}$ are perpendicular to each other is:
(A) $\frac{5}{16}$
(B) $\frac{5}{24}$
(C) $\frac{-5}{16}$
(D) $\frac{16}{5}$
f. If $\frac{d^{2} y}{d x^{2}}-y=2+3 x$, then C.F. is:
(A) $\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{x}}$
(B) $C_{1} \cos x+C_{2} \sin 3 x$
(C) $e^{x}\left(C_{1} \cos x+C_{2} \sin x\right)$
(D) $\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{2 \mathrm{x}}$
g. If $f(x)=x$, as a Fourier series in the interval $[-\pi, \pi]$ then the value of a_{0} is:
(A) -1
(B) 2
(C) 0
(D) 3
h. Value of $L[5 \sin 2 t-3 \cos 2 t]$ is:
(A) $\frac{3 \mathrm{~s}-10}{\mathrm{~s}^{2}+4}, \mathrm{~s}>0$
(B) $\frac{10-3 s}{s^{2}+4}, s>0$
(C) $\frac{5 s+6}{s^{2}+4}, s>0$
(D) $\frac{6-5 s}{s^{2}+4}, s>0$
i. Value of $\mathrm{L}\left[\mathrm{e}^{3 \mathrm{t}} \sin 4 \mathrm{t}\right]$ is:
(A) $\frac{4}{s^{2}-6 s+25}$
(B) $\frac{4}{s^{2}+6 s+25}$
(C) $\frac{4}{s^{2}-6 s+9}$
(D) $\frac{4}{s^{2}+6 s+9}$
j. The value of $L^{-1}\left[\frac{4 s+15}{16 s^{2}-25}\right]$ is:
(A) $\frac{1}{4} \cosh \left(\frac{5}{4} \mathrm{t}\right)+\sinh \left(\frac{4}{5} \mathrm{t}\right)$
(B) $\cosh \left(\frac{4}{5} \mathrm{t}\right)+\sinh \left(\frac{4}{5} \mathrm{t}\right)$
(C) $\frac{1}{4} \cosh \left(\frac{5}{4} \mathrm{t}\right)+\frac{3}{4} \sinh \left(\frac{5}{4} \mathrm{t}\right)$
(D) $\cosh \left(\frac{5}{4} \mathrm{t}\right)-\frac{3}{4} \sinh \left(\frac{5}{4} \mathrm{t}\right)$

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

$$
\begin{equation*}
\text { Q. } 2 \text { a. Evaluate } \lim _{x \rightarrow 0} \frac{\log \sin 2 x}{\log \sin x} \tag{8}
\end{equation*}
$$

\qquad
b. Expand $\cos \mathrm{x}$ in powers of $(x-\pi / 4)$ upto 4 terms (using Taylor's Expansion). (8)
Q. 3 a. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$.
b. Find the volume generated by revolving the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ about the x-axis.
Q. 4 a. If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.
b. Prove that
$(1+i)^{n}+(1-i)^{n}=2^{(n / 2)+1} \cos \left(\frac{n \pi}{4}\right)$
Q. 5 a. What is the unit vector perpendicular to each of the vectors $2 \hat{i}-\hat{j}+\hat{k}$ \& $3 \hat{i}+4 \hat{j}-\hat{k}$? Calculate the sine of the angle between these two vectors.
b. A force is represented in magnitude and direction by the line joining the point $A(1,-2,4)$ to the point $B(5,2,3)$. Find its moment about the point $(-2,3,5)$.
Q. 6 a. Solve $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{3 x}$
b. Solve $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=2 x^{2}$, given that $y(0)=0$ and $y^{\prime}(0)=0$.
Q. 7 a. Obtain a Fourier series representation for $\mathrm{f}(\mathrm{x})$ where

$$
\begin{equation*}
f(x)=\left(\frac{\pi-x}{2}\right)^{2}, 0<x<2 \pi \tag{8}
\end{equation*}
$$

b. Find the Fourier sine series which represents
$\mathrm{f}(\mathrm{x})=\pi-\mathrm{x}$ in the interval $(0, \pi)$
Q. 8 a. Find the Laplace transform of $t^{2} \cos a t$
b. Find Laplace transform of $\frac{1-e^{2 t}}{t}$
Q. 9 a. Find $L^{-1}\left\{\frac{3 s+9}{\left(s^{2}+2 s+10\right)}\right\}$
b. Use convolution theorem to find $L^{-1}\left\{\frac{1}{\left(s^{2}-s-2\right.}\right\}$

