ROLL NO. __

Code: DE51/DC51 Subject: ENGINEERING MATHEMATICS - I

Diplete – Et/cs

Time: 3 Hours

JUNE 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a.
$$\lim_{x \to 0} \frac{\sin ax}{\sin bx}$$
 is:
(A) $\frac{1}{b}$ (B) a
(C) 0 (D) $\frac{a}{b}$

b. The ratio in which the line 3x + y - 9 = 0 divides the segment joining the points (1, 3) and (2, 7)

(A) 3:4 externally	(B) 3:4 internally
(C) 4:3 internally	(D) 4:3 externally

- c. $\int \frac{\sin 4x}{\sin x} dx$ is
 - (A) $2\left[\frac{\sin 3x}{3} + \sin x\right] + c$ (B) $\frac{\sin 3x}{3} + \sin x + c$ (C) $2\left[\frac{\sin 3x}{3} - \sin x\right] + c$ (D) $\frac{\sin 3x}{3} - \sin x + c$

d. If $\Delta = \begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix}$, then the value of Δ is (A) 3 (B) 1 (C) 0 (D) 4

ROLL NO.

Code: DE51/DC51

e. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, $B = \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} -2 \\ -5 \\ 3 \end{bmatrix}$ and A+B-X=0, then the value of X is
$\mathbf{(A)} \begin{bmatrix} 2 & 3\\ -1 & 0\\ 4 & 9 \end{bmatrix}$	$\mathbf{(B)} \begin{bmatrix} 0 & 4 \\ -1 & 4 \\ 9 & 8 \end{bmatrix}$
$\mathbf{(C)} \begin{bmatrix} 2 & 0\\ -1 & 4\\ 9 & 9 \end{bmatrix}$	$\mathbf{(D)} \begin{bmatrix} -2 & 0\\ 4 & -1\\ 9 & 9 \end{bmatrix}$

f. The order and degree of differential equation $y = \frac{dy}{dx} + \frac{c}{\frac{dy}{dx}}$ is

g. The middle term in the expansion of $\left(x - \frac{1}{2y}\right)^{10}$ is

(A)
$$-\frac{63x^5}{8y^5}$$
 (B) $-\frac{63y^5}{8x^5}$
(C) $\frac{8x^5}{63y^5}$ (D) $\frac{8y^5}{63x^5}$

h. If $\cot \alpha \cot \beta = 2$, then the value of $\frac{\cos(\alpha + \beta)}{\cos(\alpha - \beta)}$ is

(A)
$$-\frac{1}{3}$$
 (B) $\frac{1}{3}$
(C) 2 (D) $\frac{1}{2}$

i. The distance between the pair of points A(2, 5), B(-3, 7) is

(A)
$$\sqrt{30}$$
 (B) $\sqrt{28}$
(C) $\sqrt{27}$ (D) $\sqrt{29}$

j. If $y = \log \sin x$, then $\frac{dy}{dx}$ is (A) $\tan x$ (B) $-\tan x$ (C) $\cot x$ (D) $-\cot x$

ROLL NO. _

Code: DE51/DC51 Subject: ENGINEERING MATHEMATICS - I

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$\sin y = x \sin(a + y)$$
, prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$. (8)

b. Prove that the straight line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-x/a}$ at the point where the curve crosses the axis of y. (8)

Q.3 a. Evaluate
$$\int \frac{1}{\sqrt{x(1-2x)}} dx$$
 (8)

b. Evaluate
$$\int_{0}^{\pi/2} \frac{\cos\theta}{(1+\sin\theta)(2+\sin\theta)} d\theta$$
 (8)

Q.4 a. Prove that
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$
 (8)

b. Apply Cramer's rule to solve the following system of linear equations x + y + z = -1 x + 2y + 3z = -4x + 3y + 4z = -6(8)

Q.5 a. Solve
$$x \frac{dy}{dx} + \cot y = 0$$
, given that $y = \frac{\pi}{4}$ when $x = \sqrt{2}$ (8)

b. Solve
$$\frac{dy}{dx} + y \sec x = \tan x$$
 (8)

Q.6 a. Prove that
$$\cos^2 A + \cos^2 (A + 120^\circ) + \cos^2 (A - 120^\circ) = \frac{3}{2}$$
 (8)

b. If
$$A + B + C = \pi$$
, prove that $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$ (8)

Q.7 a. Find the term independent of 'x' in the expansion of
$$\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$$
 (8)

b. If the 5th term of a G.P. is 16 and the 10th term is $\frac{1}{2}$, find the G.P. Also find its 15th term. (8)

DE51/DC51 / JUNE - 2013

Code: DE51/DC51 Subject: ENGINEERING MATHEMATICS - I

- Q.8 a. A line passes through (3, 4) and the sum of its intercepts on the axis is 14, find the equation of the line.(8)
 - b. Find the distance between the lines 9x + 40y 20 = 0 and 9x + 40y + 21 = 0 (8)
- Q.9 a. Find the equation of the circle whose centre is the point (1,-2) and which passes through the centre of the circle $x^2 + y^2 + 2y 3 = 0$ (8)
 - b. Find the equation of the parabola whose focus is (4,-3) and whose vertex is (4,1).