\qquad

DipIETE - ET/CS

Time: 3 Hours
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin a x}{\sin b x}$ is :
(A) $\frac{1}{b}$
(B) a
(C) 0
(D) $\frac{a}{b}$
b. The ratio in which the line $3 x+y-9=0$ divides the segment joining the points $(1,3)$ and $(2,7)$
(A) 3:4 externally
(B) 3:4 internally
(C) $4: 3$ internally
(D) 4:3 externally
c. $\int \frac{\sin 4 x}{\sin x} d x$ is
(A) $2\left[\frac{\sin 3 x}{3}+\sin x\right]+c$
(B) $\frac{\sin 3 x}{3}+\sin x+c$
(C) $2\left[\frac{\sin 3 x}{3}-\sin x\right]+c$
(D) $\frac{\sin 3 x}{3}-\sin x+c$
d. If $\Delta=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{b}+\mathrm{c} \\ 1 & \mathrm{~b} & \mathrm{c}+\mathrm{a} \\ 1 & \mathrm{c} & \mathrm{a}+\mathrm{b}\end{array}\right|$, then the value of Δ is
(A) 3
(B) 1
(C) 0
(D) 4
e. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right], B=\left[\begin{array}{cc}-3 & -2 \\ 1 & -5 \\ 4 & 3\end{array}\right]$ and $A+B-X=0$, then the value of X is
(A) $\left[\begin{array}{cc}2 & 3 \\ -1 & 0 \\ 4 & 9\end{array}\right]$
(В) $\left[\begin{array}{cc}0 & 4 \\ -1 & 4 \\ 9 & 8\end{array}\right]$
(C) $\left[\begin{array}{cc}2 & 0 \\ -1 & 4 \\ 9 & 9\end{array}\right]$
(D) $\left[\begin{array}{cc}-2 & 0 \\ 4 & -1 \\ 9 & 9\end{array}\right]$
f. The order and degree of differential equation $y=\frac{d y}{d x}+\frac{c}{\frac{d y}{d x}}$ is
(A) $\mathrm{O}=1, \mathrm{D}=1$
(B) $\mathrm{O}=1, \mathrm{D}=2$
(C) $\mathrm{O}=2, \mathrm{D}=1$
(D) $\mathrm{O}=2, \mathrm{D}=2$
g. The middle term in the expansion of $\left(x-\frac{1}{2 y}\right)^{10}$ is
(A) $-\frac{63 x^{5}}{8 y^{5}}$
(B) $-\frac{63 y^{5}}{8 x^{5}}$
(C) $\frac{8 x^{5}}{63 y^{5}}$
(D) $\frac{8 y^{5}}{63 x^{5}}$
h. If $\cot \alpha \cot \beta=2$, then the value of $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}$ is
(A) $-\frac{1}{3}$
(B) $\frac{1}{3}$
(C) 2
(D) $\frac{1}{2}$
i. The distance between the pair of points $\mathrm{A}(2,5), \mathrm{B}(-3,7)$ is
(A) $\sqrt{30}$
(B) $\sqrt{28}$
(C) $\sqrt{27}$
(D) $\sqrt{29}$
j. If $y=\log \sin x$, then $\frac{d y}{d x}$ is
(A) $\tan x$
(B) $-\tan x$
(C) $\cot x$
(D) $-\cot x$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. If $\sin y=x \sin (a+y)$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$.
b. Prove that the straight line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point where the curve crosses the axis of y.
Q. 3 a. Evaluate $\int \frac{1}{\sqrt{\mathrm{x}(1-2 \mathrm{x})}} \mathrm{dx}$
b. Evaluate $\int_{0}^{\pi / 2} \frac{\cos \theta}{(1+\sin \theta)(2+\sin \theta)} \mathrm{d} \theta$
Q. 4 a. Prove that $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
b. Apply Cramer's rule to solve the following system of linear equations

$$
\begin{align*}
& x+y+z=-1 \\
& x+2 y+3 z=-4 \tag{8}\\
& x+3 y+4 z=-6
\end{align*}
$$

Q. 5 a. Solve $\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\cot \mathrm{y}=0$, given that $\mathrm{y}=\frac{\pi}{4}$ when $\mathrm{x}=\sqrt{2}$
b. Solve $\frac{d y}{d x}+y \sec x=\tan x$
Q. 6 a. Prove that $\cos ^{2} \mathrm{~A}+\cos ^{2}\left(\mathrm{~A}+120^{\circ}\right)+\cos ^{2}\left(\mathrm{~A}-120^{\circ}\right)=\frac{3}{2}$
b. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, prove that $\cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=\cot \frac{\mathrm{A}}{2} \cot \frac{\mathrm{~B}}{2} \cot \frac{\mathrm{C}}{2}$
Q. 7 a. Find the term independent of ' x ' in the expansion of $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}$
b. If the $5^{\text {th }}$ term of a G.P. is 16 and the $10^{\text {th }}$ term is $\frac{1}{2}$, find the G.P. Also find its $15^{\text {th }}$ term.
Q. 8 a. A line passes through $(3,4)$ and the sum of its intercepts on the axis is 14 , find the equation of the line.
b. Find the distance between the lines $9 x+40 y-20=0$ and $9 x+40 y+21=0$
Q. 9 a. Find the equation of the circle whose centre is the point $(1,-2)$ and which passes through the centre of the circle $x^{2}+y^{2}+2 y-3=0$
b. Find the equation of the parabola whose focus is $(4,-3)$ and whose vertex is $(4,1)$.

