ROLL NO. _

Code: AE74

Subject: VLSI DESIGN

AMIETE – ET

Time: 3 Hours

JUNE 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The material used for developing insulating layer between gate and substrate is

(A) Polysilicon	(B) Silicon dioxide
(C) Boron	(D) Arson

b. The polarity of NMOS depletion type FET gate voltage is

(A) Positive	(B) Negative
(C) Neutral	(D) Both positive & negative

c. The circular disc used for IC fabrication is named as

(A) Cylinder	(B) Plate
(C) Wafer	(D) CD

d. The nominal threshold voltage for NMOS enhancement type MOSFET is

(A) 0.3 VDD	(B) 0.1 VDD
(C) 0.4 VDD	(D) 0.2 VDD

e. Typical values of $\boldsymbol{\mu}$ at room temperature are

(A) $ \begin{aligned} \mu_n &= 650 \text{cm}^2/\text{V} \text{ sec} \\ \mu_p &= 240 \text{cm}^2/\text{V} \text{ sec} \end{aligned} $	(B) $\frac{\mu_n = 65 \text{cm}^2/\text{V sec}}{\mu_p = 24 \text{cm}^2/\text{V sec}}$		
$\mu_p = 240 \text{cm}^2/\text{V} \text{sec}$	$\mu_p = 24 \text{cm}^2/\text{V} \text{sec}$		
(C) $\frac{\mu_n = 1250 \text{ cm}^2/\text{V sec}}{\mu_p = 480 \text{ cm}^2/\text{V sec}}$	(D) $\frac{\mu_n = 125 \text{cm}^2/\text{V sec}}{\mu_p = 480 \text{cm}^2/\text{V sec}}$		
$\mu_p = 480 \text{cm}^2/\text{V} \text{sec}$	$\mu_p = 480 \text{cm}^2/\text{V} \text{sec}$		

Code: AE74	Subject: VLSI DESIGN
f. In BiCMOS Inverters, the design	approach is to use
 (A) MOS - Logic BIPOLAR – Driving (C) MOS - Driving BIPOLAR – Logic 	 (B) MOS – Logic & Driving BIPOLAR - Switching (D) None of these
g. Latch-up problem is negligible in	fabrication method
(A) Twin tub process(C) P-Well Process	(B) N-Well Process(D) None of these
h. NMOS pass transistor has	voltage level degradation
 (A) Low level (C) Both (A) & (B) i. R_{on} of NMOS Z_{pu} / Z_{pd} ratio o 	 (B) High level (D) None of these f 8:1 is (Assume 5 micron technology)
 (A) 40 KΩ (C) 60 KΩ 	 (B) 50 KΩ (D) 90 KΩ
j. Optimization in Area, speed and style	power can be achieved in design
(A) Full custom(C) ASIC	(B) Semi custom(D) Gate array
• -	ons out of EIGHT Questions. carries 16 marks.

- Q.2 a. Write the basic structure of NMOS transistor for enhancement and depletion mode indicating all layers. (4)
 b. With neat sketch explain the NMOS n-well Fabrication process. (8)
 - c. Compare CMOS technology with Bipolar technology. (4)
- Q.3 a. Derive an expression for I_{ds} in terms of K, $\binom{W}{L}$ ratio and V_{ds} in both saturation and non saturation. (8)
 - b. With neat circuit diagrams explain the various form of pull up used in MOS circuits. Compare the merits and demerits of each. (8)

Q.4	a.	Write the circuit and stick diagram for
		(i) two input CMOS NAND gate
		(ii) $y = AB + CD$

	C	ode: AE74 Subject: VLSI DESIGN	
	b.	Write the design rules of transistor, wires and contacts. Explain briefl neat sketch	y with (8)
Q.5	a.	Determine the total delay of NMOS and CMOS inverter pair.	(4)
	b.	Calculate the capacitance of a metal layer with $L = 20 \lambda$ and width = terms of standard unit of capacitance.	3λ in (4)
	c.	Derive an expression for total delay of N inverters (NfMOS) connect cascaded form to drive a large capacitive load.	cted in (8)
Q.6	a.	Explain briefly three different scaling models defined in VLSI design.	(6)
	b.	Draw schematic and stick diagram of an 2-input NOR-gate using CMO BiCMOS logic.	DS and (10)
Q.7	a.	Design an adder element that can be cascaded to form 'n' bit adder.	(6)
	b.	Write the circuit of Manchester carry chain element. Explain briefly with the requirement of buffering in cascaded Manchester carry chain circuit.	figure (10)
Q.8	a.	Write the circuit of three transistor dynamic RAM cell and explain brief and write functions.	ly read (10)
	b.	Write note on factors influencing choice of layer for wiring.	(6)
Q.9	a.	With an example explain sensitized path based testing used for comb logic circuit.	ination (8)
	1		$\langle 0 \rangle$

b. Explain DRC, Circuit Extractor and Simulator with example. (8)