\qquad

AMIETE - ET

Time: 3 Hours
JUNE 2013
Max. Marks: 100

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. A probability density function is given by $\mathrm{P}(\mathrm{x})=\mathrm{ke}^{-\mathrm{x}^{2} / 2},-\infty<\mathrm{x}<\infty$. The value of k is
(A) $\frac{1}{\sqrt{2 \pi}}$
(B) $\sqrt{\frac{2}{\pi}}$
(C) $\frac{1}{2 \sqrt{\pi}}$
(D) $\frac{1}{\pi \sqrt{2}}$
b. The spectral density of real valued random process has
(A) an even symmetry
(B) an odd symmetry
(C) a conjugate symmetry
(D) no symmetry
c. The imaginary channel rejection in a superheterodyne receiver comes from
(A) IF stages only
(B) RF stages only
(C) Detector and RF stages
(D) Detector, RF \& IF stages
d. If Y and Z are random variables obtained by sampling $\mathrm{X}(\mathrm{t})$ at $\mathrm{t}=2$ and $\mathrm{t}=4$ respectively and let $\mathrm{W}=\mathrm{Y}-\mathrm{Z}$. The variance of W is
(A) 13.36
(B) 9.36
(C) 2.64
(D) 8.00
e. Auto correlation function of a random process is
(A) $R\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{E}(\mathrm{XY})=\iint \mathrm{xyp}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}$
(B) $E(X Y)=\iint x^{2} y^{2} d x d y$
(C) $R\left(t_{1}, t_{2}\right)=\iint x^{2} y^{2} d x d y$
(D) None of these
\qquad
f. The differential entropy of N_{k} as
(A) $\mathrm{h}\left(\mathrm{N}_{\mathrm{k}}\right)=\frac{1}{2} \log _{2}\left[2 \pi \mathrm{e}\left(\mathrm{P}+\sigma^{2}\right)\right]$
(B) $\mathrm{h}\left(\mathrm{N}_{\mathrm{k}}\right)=\frac{1}{2} \log _{2}\left(2 \pi \mathrm{e} \sigma^{2}\right)$
(C) Both (A) \& (B)
(D) None of these
g. In a SEC Hamming code, the number of message bits in a block is 26 . The number of check bits in the block would be
(A) 3
(B) 4
(C) 5
(D) 7
h. Maximum-Length codes are generated by polynomials of the form
(A) $g(D)=h(D) \cdot\left(1+D^{n}\right)$
(B) $g(D)=\frac{h(D)}{\left(1+D^{n}\right)}$
(C) $g(D)=\frac{1+D^{n}}{h(D)}$
(D) None of these
i. If the data unit is 111111 and divisor is 1010 , then the dividend at the transmitter is
(A) 1111111000
(B) 1111110000
(C) 111111
(D) 111111000
j. A source generates 4 messages. The entropy of source will be maximum when
(A) All probabilities are equal
(B) One of probabilities equal to 1 and others are zero
(C) The probabilities are $1 / 2,1 / 4$ and $1 / 2$
(D) Two probabilities are $1 / 2$ and others are zero

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Define the following terms:
(i) Joint probability
(ii) Conditional probability
(iii) Probability mass function
(iv) Statistical independence
b. The input of a binary communication systems denoted by random variable X , takes on one of the two values 0 or 1 with probabilities $3 / 4$ and $1 / 4$ respectively. Due to error caused by noise in the system, the output Y differs
\qquad
from the input X occasionally. The behaviour of the communication system is modelled by the conditional probabilities.

$$
\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=1)=3 / 4 \& \mathrm{P}(\mathrm{Y}=0 \mid \mathrm{X}=0)=\frac{7}{8}
$$

Find
(i) $\mathrm{P}(\mathrm{Y}=1)$ and $\mathrm{P}(\mathrm{Y}=0)$
(ii) $\mathrm{P}(\mathrm{X}=1 \mid \mathrm{Y}=1)$
Q. 3 a. Explain the three models for continuous random variables.
b. X and Y are two independent random variables, each having a Gaussian probability distribution function with a mean of zero and a variance of one.
(i) Find $\mathrm{P}(|\mathrm{X}|>3)$ using $\mathrm{Q}(4)$ and also obtain an upper bound. Given that $\mathrm{Q}(0)=1 / 2, \mathrm{Q}(3)=0.0013$.
(ii) Find the joint PDF of $Z=\sqrt{x^{2}+y^{2}} \& \omega=\tan ^{-1}(y / x)$
(iii) Find $\mathrm{P}(\mathrm{z}>3)$
Q. 4 a. Explain Markoff statistical model for information sources.
b. A discrete source emits one of five symbols once every millisecond. The symbol probabilities are $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ and $\frac{1}{16}$ respectively. Find the source entropy and information rate.
Q. 5 a. Explain briefly Huffman coding and prefix coding.
b. A source produces one of four possible symbols during each interval having
probabilities $\mathrm{P}\left(\mathrm{x}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{x}_{2}\right)=\frac{1}{4}, \mathrm{P}\left(\mathrm{x}_{3}\right)=\mathrm{P}\left(\mathrm{x}_{4}\right)=\frac{1}{8}$. Obtain the information contents of each of these symbols.
Q. 6 a. Explain Discrete Memoryless channel.
(8)
b. A discrete memoryless source X has four symbols $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ with probabilities $\mathrm{P}\left(\mathrm{x}_{1}\right)=0.4, \mathrm{P}\left(\mathrm{x}_{2}\right)=0.3, \mathrm{P}\left(\mathrm{x}_{3}\right)=0.2, \mathrm{P}\left(\mathrm{x}_{4}\right)=0.1$
(i) Calculate $\mathrm{H}(\mathrm{X})$
(ii) Find the amount of information contained in the message $\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{3}$ and
$\mathrm{x}_{4} \mathrm{X}_{3} \mathrm{X}_{3} \mathrm{x}_{2}$ 。
Q. 7 a. Explain the following terms:
(i) Mutual information
(ii) Channel capacity
b. Explain differential entropy and mutual information for continuous ensembles.
Q. 8 a. What is linear block code? Explain the steps for determination of all code words for a linear block code.
(8)
b. The generator matrix for a $(6,3)$ block code is given as
$G=\left[\begin{array}{lll|lll}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$
Find all code vectors of this code.
Q. 9 a. Explain cyclic codes. Give their advantages and disadvantages.
(8)
b. Obtain the convolutional coded output for the message '1100101'. The convolutional encoder is shown in Fig. 1

Fig. 1

